Как устроен объектив фотоаппарата: Как устроен объектив. Практическая фотография

Содержание

Как устроен объектив. Практическая фотография

Как устроен объектив

Даже самые простые современные объективы состоят из двух-трех линз, а более совершенные — еще сложнее.

На рис. 4 показан объектив «Юпитер-8». В нем шесть линз.

Рис. 4. В объективе «Юпитер-8» шесть линз

Хотя простая собирательная линза и дает изображение, но из-за свойственных ей оптических недостатков изображение получается плохим — резким только в центральной части и совершенно нерезким по краям. Прямые линии на краях изображения получаются изогнутыми.

Правда, многие недостатки простой линзы можно значительно смягчить с помощью диафрагмы (светонепроницаемой заслонки с небольшим отверстием в центре), поместив ее перед или за линзой. Этим средством и пользовались первые фотографы, в распоряжении которых не было хороших объективов. Но с применением диафрагмы количество света, проходящего через объектив, во много раз уменьшается, что, естественно, вызывает значительное увеличение выдержки во время съемки.

Поиски иных способов, которые позволили бы повысить качество работы объектива, не уменьшая его действующего отверстия, уже в первые годы существования фотографии показали, что достигнуть этого можно только сочетанием в объективе двух или нескольких линз определенной формы, изготовленных из специальных сортов оптического стекла[3]. Первым таким объективом был ахромат (рис. 5) — ахроматическая линза, склеенная из двух линз. Затем предложили перископ — объектив из двух отдельно стоящих линз. Позднее был создан апланат, состоящий из двух отдельно стоящих ахроматов и просуществовавший почти 30 лет как лучший объектив своего времени, хотя и ему были свойственны некоторые оптические недостатки. И только в начале нашего века удалось создать наиболее совершенные объективы, практически свободные от всех недостатков. Объективы эти получили название анастигматов.

Рис. 5. Так совершенствовался фотографический объектив

В настоящее время выпускаются только анастигматы, если не считать некоторых фотоаппаратов упрощенного типа, в которых устанавливаются более простые объективы. Оптические схемы анастигматов весьма разнообразны и часто очень сложны.

Фотографическим объективам, как и фотоаппаратам, присваивают названия, например: «Индустар», «Руссар», «Орион» и т. п. Иногда эти названия дополняют тем или иным цифровым шифром, например: «Гелиос-44», «Индустар-50». Лишь изредка в названии объектива отражаются конструктивные или другие особенности. Так, буквой «Т» обозначают трехлинзовые объективы (триплеты), приставкой «Теле» (например, «Телемар») обозначают телеобъективы.

Главные оптические характеристики обозначаются на оправе передней линзы объектива рядом с названием. Именно этими характеристиками и надо руководствоваться при покупке фотоаппарата.

Все современные объективы дают весьма четкое и геометрически правильное изображение снимаемых предметов по всему полю фотокадра, но технические характеристики и связанные с ними оптические свойства у разных объективов различны. Объективы различаются по светосиле, величине главного фокусного расстояния, углу поля изображения и разрешающей силе. Наибольшее практическое значение имеют светосила и главное фокусное расстояние. Численные выражения этих характеристик и наносят на оправы объективов.

Рис. 6. Главные технические характеристики объектива наносятся на его оправу

Взгляните на оправу объектива. Кроме названия и порядкового номера вы увидите, к примеру, такие пока еще непонятные вам условные обозначения: «1:3,5» и «F = 5 см» (рис. 6). Первое из них характеризует светосилу объектива, второе выражает величину его

главного фокусного расстояния.[4] Со смыслом и значением этих характеристик необходимо ознакомиться в первую очередь.

Как устроен фотоаппарат

Как устроен фотоаппарат В простейшем виде фотографический аппарат представляет собой светонепроницаемую коробку (камеру)[1] с линзой. Изображение, создаваемое линзой, образуется на противоположной стенке камеры, где и располагается фотопластинка или фотопленка[2] (рис.

Просветленный объектив

Просветленный объектив Вы, вероятно, заметили, что линзы современных объективов отсвечивают голубоватым или сиренево-фиолетовым цветом. Может показаться, что стекло, из которого сделаны линзы объектива, окрашено. Однако нетрудно убедиться, что никакой окраски здесь нет.

Как устроен объектив цифрового фотоаппарата

Зачем фотографу знать, как устроен объектив фотоаппарата? Казалось бы, бери и снимай прекрасные снимки и не думай о технической части. На практике дело обстоит совершенно по-другому.

Объектив в фотоаппарате очень важная деталь. Именно он создает световое изображение, которое максимально точно передает образ фотографируемого предмета.

Производители фототехники и продавцы уже приучили потребителей обращать внимание на разрешение матрицы. Бытует миф, что чем больше пресловутых мегапикселей содержит матрица, тем лучше качество изображения.

С таким подходом конечно, впаривать очередную новинку фототехники ни чего не понимающему покупателю гораздо проще. Да и сами продавцы не особо хотят вникать в суть проблемы.

А мы с вами постараемся более детально разобраться в этом вопросе. Мы уже выяснили, что объектив формирует изображение, а следовательно чем качественнее он будет, тем более четким будет изображение и оно не будет иметь искажений.

Ни какая матрица, даже самая супер навороченная, не способна исправить искажения (аберрации), которые дает объектив. Все грешки оптики будут прекрасно видны на снимках. Поэтому, покупая фотокамеру особое внимание уделяем объективу.

Продолжаем рассматривать вопрос, как устроен объектив фотоаппарата. Если сравнивать объективы обычной пленочной и цифровой фотокамер, то можно заметить, что объектив цировика имеет гораздо меньшие размеры.

У объектива цифровой фотокамеры также меньше фокусное расстояние. В чем тут дело? Оказывается, производители идут на хитрость. Чтобы уменьшить стоимость техники они делают матрицу гораздо меньших размеров в сравнении с кадром стандартной любительской пленочной камеры.

Рисунок 1. Объектив фотокамеры в разрезе.

Если мы установим такую матрицу на место фотопленки, то возникнет впечатление, что снимок сделан с использованием объектива у которого очень большое фокусное расстояние. Работать с такой фотокамерой в условиях помещения будет крайне неудобно, так как фотограф будет вынужден отходить от объекта съемки на значительные расстояния.

Именно по этой причине фокусное расстояние объективов цифровых камер значительно меньше фокусного расстояния объективов пленочных камер. При этом угол охвата остается неизменным.

Кроме системы линз объектив содержит в своем устройстве еще два необходимых элемента – это диафрагма и затвор. Диафрагма объектива состоит из нескольких лепестков, которые могут сдвигаться, уменьшая отверстие, сквозь которое проходит световой поток, тем самым становится возможным управление количеством света, который проходит к матрице.

Затвор фотокамеры необходим для управления временем засветки матрицы. Он дозирует количество света попадающего на матрицу. Но его работа отличается от работы затвора пленочного фотоаппарата.

У пленочной фотокамеры затвор постоянно закрыт, чтобы не допустить засветки пленки и открывается только на короткий миг в момент съемки. В цифровых фотокамерах затвор открыт постоянно. Это делается для того, чтобы фотограф мог видеть на встроенном экране изображение снимаемого объекта.

Если затвор будет закрыт, то матрица не получит засветки и на экране не будет видно ни чего. Возникает вполне резонный вопрос, зачем тогда нужен затвор, если он постоянно открыт?

Все дело в том, что затвор закрывается после нажатия кнопки только для того, чтобы перенести информацию с матрицы в память фотокамеры.

Следующим элементом, входящим в устройство объектива фотокамеры является инфракрасный фильтр. Его назначение – задерживать инфракрасное излучение. Делается это для того, чтобы снимки соответствовали реальности, так как матрица очень восприимчива к инфракрасным лучам в отличие от человеческого глаза, который эти лучи не видит.

В следующей статье мы рассмотрим основные характеристики объектива, которые зависят от того, как устроен объектив фотоаппарата.

Объяснение объективов камеры | Canon Australia

Независимо от того, являетесь ли вы фотографом, режиссером или оператором гибридной съемки, понимание того, как работает ваш объектив, так же важно, как и оттачивание навыков работы с камерой. Здесь фотограф Canon Дженн Купер проливает свет на то, что означают эти цифры на объективе, охватывая все, от фокусных расстояний и значений диафрагмы до различных типов объективов и того, когда использовать каждый из них.


Как именно работают объективы фотоаппаратов?

Объективы работают аналогично человеческому глазу и позволяют контролировать количество света, попадающего в камеру. Внутри каждой линзы находится ряд выпуклых и вогнутых оптических элементов, которые работают вместе, преломляя свет и преломляя его в единую фокусную точку.


Что означает фокусное расстояние и как оно работает?

Каждый объектив имеет определенное фокусное расстояние или число увеличения, которое измеряется в миллиметрах (мм). Обычно это отображается на самом объективе.

Чем больше фокусное расстояние, тем больше увеличение. Чем меньше фокусное расстояние, тем меньше увеличение. Например, объектив с фокусным расстоянием 24 мм даст меньшее увеличение, чем объектив с фокусным расстоянием 200 мм.


Общие сведения о различных типах объективов и фокусных расстояниях

Объективы для фотоаппаратов бывают всех форм и размеров и предназначены для различных сценариев съемки. Ознакомьтесь с полным ассортиментом объективов Canon здесь.


Зум-объективы

Зум-объективы, такие как EF-S 18–55 мм f/3,5–5,6 III или EF 24–70 мм f/2,8 L IS USM, имеют различные фокусные расстояния. Это делает их чрезвычайно универсальными, поэтому многие фотографы считают их незаменимыми, особенно для путешествующих фотографов, которые не хотят носить с собой несколько объективов.


Объективы с фиксированным фокусным расстоянием

Объективы с одним фокусным расстоянием, такие как EF 35 мм f/2 IS USM или EF 50 мм f/1,8 STM, называются объективами с фиксированным фокусным расстоянием. Объективы с фиксированным фокусным расстоянием не позволяют увеличивать объект. Однако, поскольку в них меньше элементов объектива и меньше движущихся частей в целом, они обычно обеспечивают превосходное качество изображения.

Объективы с фиксированным фокусным расстоянием также имеют низкие значения диафрагмы, такие как f/1,8 или даже f/1,2, что означает малую глубину резкости. Это делает их подходящими для портретной и товарной фотографии, а также для любого типа фотографии, где желателен мягкий размытый фон. Эти широкие апертуры также пропускают больше света в вашу камеру, что делает их идеальными для съемки в условиях низкой освещенности.


Телеобъективы

Объективы с большим фокусным расстоянием называются телеобъективами и обеспечивают большее увеличение при съемке удаленных объектов. Например, объектив EF 100-400mm f/4.5-5.6 IS II USM часто используется для съемки дикой природы и спорта, позволяя фотографу увеличить изображение животного или спортсмена, когда невозможно приблизиться к ним.


Широкоугольные объективы

Широкоугольные объективы, такие как EF 10-22 мм f/3,5-4,5 USM или EF 16-35 мм f/4 L IS USM, имеют меньшее фокусное расстояние и могут захватывать более широкую перспективу. Это делает их подходящими для пейзажной фотографии или любого типа фотографии, где вы снимаете в ограниченном пространстве, например, для съемки архитектуры или интерьера.


Макрообъективы

Макрообъективы позволяют увеличивать и фокусироваться на объектах, находящихся на очень близком расстоянии. Макрообъективы, такие как EF-S 35mm f/1.8 Macro IS STM, позволяют объектам выглядеть больше, чем в натуральную величину, с большей детализацией. Это идеально подходит для увеличения насекомых, цветов или искусственных объектов и получения мельчайших деталей.


Что такое диафрагма (число F) и как она работает?

Диафрагма вашего объектива — это отверстие, которое позволяет свету проникать и достигать сенсора вашей камеры. Его можно настроить так же, как радужную оболочку человеческого глаза, которая расширяется или сужается в зависимости от доступного света. В фотографии диафрагма объектива измеряется в числах F или F-ступенях и обычно выражается на объективе следующим образом: F/4,5–5,5. В этом примере минимальная диафрагма для этого объектива находится в диапазоне от f/4,5 до f/5,5, в зависимости от того, какое фокусное расстояние вы используете. Как правило, чем меньше диафрагма, тем больше отверстие диафрагмы, и наоборот.


Глубина резкости

Диафрагма также управляет глубиной резкости, которая используется для отделения объекта от фона. Небольшое число F, такое как f/1.8, даст вам резкую точку фокусировки с мягким размытым фоном. Большее число F, такое как f/16, даст вам большую глубину резкости, в результате чего передний план и задний план будут в фокусе.


Преимущества при слабом освещении

Выбор небольшой диафрагмы, такой как f/2,8, позволит пропускать больше света через объектив, что означает, что вы можете снимать при слабом освещении с более низким значением ISO и более короткой выдержкой. С другой стороны, f/16 ограничит количество света, проходящего через объектив, а это означает, что вам нужно будет компенсировать это, выбрав более высокое значение ISO или более длинную выдержку для достижения той же экспозиции. Отношения между этими тремя функциями широко известны как основы треугольника экспозиции.


Что такое ISO и как он работает?

ISO управляет чувствительностью сенсора вашей камеры к свету. Более низкое значение ISO, например ISO 100 или 200, используется при ярком дневном свете или при съемке хорошо освещенных сцен в помещении. Более высокие уровни ISO, такие как ISO 3200 или 6400, позволяют вашей камере работать в условиях низкой освещенности. Однако компромисс заключается в том, что высокие уровни ISO вносят цифровой шум в ваши изображения. По возможности всегда лучше снимать с низким значением ISO, чтобы сохранить наилучшее качество изображения.


Какие камеры оснащены сменными объективами?

Зеркальные зеркальные камеры (цифровые однообъективные зеркальные) и беззеркальные камеры Canon имеют сменные объективы. Это позволяет использовать один и тот же корпус камеры с различными объективами. Например, цифровая зеркальная фотокамера позволяет использовать фикс-объектив EF 50 мм f/1,4 USM при съемке портретов или телеобъектив EF 70–300 мм f/4–5,6 IS II USM при съемке дикой природы.


Какой объектив можно использовать с моей камерой?

Важно знать, какие объективы можно использовать с вашей камерой. Если название вашего объектива начинается с EF, EF-S, EF-M или RF, это указывает на тип крепления объектива вашей камеры. Каждое крепление объектива соединяется с соответствующим корпусом камеры.


Объективы EF

Объективы EF — это линейка профессиональных объективов Canon. Они обозначены красной точкой и обычно имеют красное кольцо вокруг внешней стороны объектива, которое является визитной карточкой наших объективов серии L. Их можно использовать на всех цифровых зеркальных камерах Canon и на беззеркальных камерах Canon при использовании адаптера.


Объективы EF-S

Крепление объектива EF-S обозначено белым квадратом на объективе и соответствует белому квадрату на корпусе камеры. Эти объективы можно использовать с цифровыми зеркальными фотокамерами Canon с датчиками APS-C, такими как EOS 200D, EOS 80D и EOS 7D Mark II.


Объективы EF-M

Объективы EF-M предназначены для беззеркальных камер Canon EOS M, таких как EOS M50. Это самые маленькие из линейки сменных объективов Canon, что делает их идеальными камерами для путешествий.


Объективы RF

Объективы RF созданы с использованием новейших технологий Canon и разработаны специально для полнокадровых беззеркальных камер Canon EOS R и EOS RP.

Для получения дополнительных советов и руководств по фотографии нажмите здесь.

Как работают камеры | HowStuffWorks

Фотография, несомненно, является одним из самых важных изобретений в истории — она действительно изменила представление людей о мире. Теперь мы можем «видеть» всевозможные вещи, которые на самом деле находятся за много миль — и лет — от нас. Фотография позволяет запечатлеть моменты времени и сохранить их на долгие годы.

Базовая технология, которая делает все это возможным, довольно проста. Фотокамера состоит из трех основных элементов: оптического элемента (объектива), химического элемента (пленки) и механического элемента (сам корпус камеры). Как мы увидим, единственная хитрость в фотографии — это калибровка и комбинирование этих элементов таким образом, чтобы они записывали четкое, узнаваемое изображение.

Реклама

Есть много разных способов собрать все вместе. В этой статье мы рассмотрим ручная однообъективная зеркальная камера (зеркальная). Это камера, в которой фотограф видит точно такое же изображение, которое экспонируется на пленку, и может все настроить, поворачивая циферблаты и нажимая кнопки. Поскольку для съемки не требуется электричество, зеркальная фотокамера с ручным управлением прекрасно иллюстрирует основные процессы фотографии.

Оптический компонент камеры — объектив . В самом простом случае линза — это изогнутый кусок стекла или пластика. Его работа состоит в том, чтобы собирать лучи света, отражающиеся от объекта, и перенаправлять их так, чтобы они вместе образовывали реальное изображение — изображение, которое выглядит точно так же, как сцена перед объективом.

Но как это может сделать кусок стекла? Процесс на самом деле очень простой. Когда свет переходит из одной среды в другую, он меняет скорость. Свет распространяется быстрее через воздух, чем через стекло, поэтому линза замедляет его.

Когда световые волны входят в стекло под углом, одна часть волны достигает стекла раньше другой и начинает замедляться первой. Это что-то вроде толкания тележки с тротуара на траву под углом. Правое колесо первым касается травы и поэтому замедляется, пока левое колесо все еще находится на тротуаре. Поскольку левое колесо кратковременно движется быстрее, чем правое, тележка для покупок поворачивает вправо, когда движется по траве.

«»

Воздействие на свет такое же — когда он входит в стекло под углом, он изгибает в одном направлении. Он снова изгибается, когда выходит из стекла, потому что части световой волны входят в воздух и ускоряются раньше других частей волны. В стандартной собирающей линзе или выпуклой линзе одна или обе стороны стекла выгнуты наружу. Это означает, что лучи света, проходящие через линзу, будут преломляться к центру линзы при входе. В двояковыпуклой линзе , например, увеличительное стекло, свет будет искривляться как при выходе, так и при входе.

«»

Эффективно изменяет путь света от объекта. Источник света, скажем, свеча, излучает свет во всех направлениях. Все лучи света начинаются в одной и той же точке — пламени свечи — и затем постоянно расходятся. Собирающая линза собирает эти лучи и перенаправляет их так, чтобы все они снова сходились в одну точку. В точке, где лучи сходятся, получается реальное изображение свечи. В следующих двух разделах мы рассмотрим некоторые переменные, которые определяют, как формируется это реальное изображение.

0003

Реклама

Содержание

  1. Камеры: Фокус
  2. Объективы камеры
  3. Камеры: записывающий свет
  4. Камеры: правильный свет
  5. Зеркальные камеры против «наведи и снимай»
  6. Самодельные камеры

Камеры: Фокус

Мы видели, что реальное изображение формируется светом, проходящим через выпуклую линзу. Природа этого реального изображения меняется в зависимости от того, как свет проходит через линзу. Этот световой путь зависит от двух основных факторов:

  • Угол входа светового луча в линзу
  • Структура линзы

Угол входа света изменяется, когда вы приближаете или удаляете объект от объектива. Вы можете увидеть это на диаграмме ниже. Лучи света от острия карандаша входят в линзу под более острым углом, когда карандаш находится ближе к линзе, и под более тупым углом, когда карандаш находится дальше. Но в целом линза искривляет световой луч только до определенной степени, независимо от того, как он входит. Следовательно, световые лучи, входящие под более острым углом, будут выходить под более тупым углом, и наоборот. Общий «угол изгиба» в любой конкретной точке линзы остается постоянным.

Реклама

Как видите, световые лучи из более близкой точки сходятся дальше от линзы, чем световые лучи из более удаленной точки. Другими словами, реальное изображение более близкого объекта формируется дальше от линзы, чем реальное изображение более удаленного объекта.

Вы можете наблюдать это явление с помощью простого эксперимента. Зажгите в темноте свечу и держите между ней и стеной увеличительное стекло. Вы увидите перевернутое изображение свечи на стене. Если реальное изображение свечи не падает прямо на стену, оно будет выглядеть несколько размытым. Лучи света из определенной точки в этой точке не совсем сходятся. Чтобы сфокусировать изображение, переместите увеличительное стекло ближе или дальше от свечи.

«»

Это то, что вы делаете, когда поворачиваете объектив камеры, чтобы сфокусировать его — вы перемещаете его ближе или дальше от поверхности пленки. Когда вы перемещаете объектив, вы можете выровнять сфокусированное реальное изображение объекта так, чтобы оно попадало прямо на поверхность пленки.

Теперь вы знаете, что в любой точке линза преломляет световые лучи в определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы 9.0134 .

Реклама

Объективы камеры

В предыдущем разделе мы видели, что в любой точке линза преломляет световые лучи до определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы.

Линза с более круглой формой (центр, который выступает дальше) будет иметь более острый угол изгиба. По сути, изгиб линзы увеличивает расстояние между различными точками на линзе. Это увеличивает время, в течение которого одна часть световой волны движется быстрее, чем другая часть, поэтому свет делает более резкий поворот.

Реклама

Увеличение угла изгиба дает очевидный эффект. Лучи света из определенной точки сойдутся в точке, расположенной ближе к линзе. В линзе с более плоской формой лучи света не будут поворачиваться так резко. Следовательно, световые лучи будут сходиться дальше от линзы. Иными словами, сфокусированное реальное изображение формируется дальше от линзы, когда линза имеет более плоскую поверхность.

Увеличение расстояния между объективом и реальным изображением фактически увеличивает общий размер реального изображения. Если подумать, в этом есть смысл. Подумайте о проекторе: по мере того, как вы отдаляете проектор от экрана, изображение становится больше. Проще говоря, световые лучи продолжают расходиться, приближаясь к экрану.

В камере происходит то же самое. По мере увеличения расстояния между объективом и реальным изображением световые лучи рассеиваются больше, формируя реальное изображение большего размера. Но размер пленки остается постоянным. Когда вы прикрепляете очень плоский объектив, он проецирует большое реальное изображение, но пленка экспонируется только в его средней части. По сути, объектив фокусируется на середине кадра, увеличивая небольшую часть сцены перед вами. Более круглая линза дает меньшее реальное изображение, поэтому поверхность пленки видит гораздо более широкую область сцены (при уменьшенном увеличении).

Профессиональные камеры позволяют прикреплять различные объективы, чтобы вы могли видеть сцену с разным увеличением. Сила увеличения объектива описывается его фокусным расстоянием . В камерах фокусное расстояние определяется как расстояние между объективом и реальным изображением объекта на дальнем расстоянии (например, луны). Более высокое число фокусного расстояния указывает на большее увеличение изображения.

Разные объективы подходят для разных ситуаций. Если вы фотографируете горный хребет, вы можете использовать телеобъектив , объектив с особенно большим фокусным расстоянием. Этот объектив позволяет сосредоточиться на определенных элементах на расстоянии, поэтому вы можете создавать более плотные композиции. Если вы снимаете портрет крупным планом, вы можете использовать широкоугольный объектив . Этот объектив имеет гораздо более короткое фокусное расстояние, поэтому он уменьшает сцену перед вами. Пленка освещает все лицо, даже если объект находится всего в футе от камеры. Стандартный 50-миллиметровый объектив камеры не увеличивает и не уменьшает изображение, что делает его идеальным для съемки объектов, которые не находятся особенно близко или далеко.

Реклама

Камеры: записывающий свет

Химическим компонентом традиционной камеры является пленка . По существу, когда вы подвергаете пленку реальному изображению , она создает химическую запись картины света.

Он делает это с помощью набора крошечных светочувствительных зерен, распределенных в виде химической суспензии на полоске пластика. Под воздействием света зерна вступают в химическую реакцию.

Реклама

Когда рулон закончен, пленка проявляется — она ​​подвергается воздействию других химикатов, которые вступают в реакцию со светочувствительными зернами. В черно-белой пленке химические вещества-проявители затемняют зерна, подвергшиеся воздействию света. Это создает негатив, где более светлые области кажутся темнее, а более темные области кажутся светлее, который затем преобразуется в позитив при печати.

Цветная пленка состоит из трех различных слоев светочувствительных материалов, которые, в свою очередь, реагируют на красный, зеленый и синий цвета. Когда пленка проявляется, эти слои подвергаются воздействию химических веществ, которые окрашивают слои пленки. Когда вы накладываете информацию о цвете со всех трех слоев, вы получаете полноцветный негатив.

Подробное описание всего этого процесса см. в статье «Как работает фотопленка».

До сих пор мы рассматривали основную идею фотографии: вы создаете реальное изображение с помощью собирающей линзы и записываете световой узор этого реального изображения на слой светочувствительного материала. Концептуально это все, что нужно для создания фотографии. Но чтобы получить четкое изображение, вы должны тщательно контролировать, как все складывается.

Очевидно, что если бы вы положили на землю кусок пленки и сфокусировали на нем реальное изображение с помощью собирающей линзы, вы не получили бы никакого пригодного для использования изображения. На открытом воздухе каждое зерно в пленке будет полностью освещено светом. А без контрастных неэкспонированных участков нет картинки.

Чтобы сделать снимок, вы должны держать пленку в полной темноте, пока не придет время делать снимок. Затем, когда вы хотите записать изображение, вы пропускаете немного света. На самом базовом уровне это все, что представляет собой корпус камеры — герметичная коробка с затвором , который открывается и закрывается между объективом и пленкой. . На самом деле, термин камера сокращен от camera obscura , буквально «темная комната» на латыни.

Чтобы изображение получилось правильным, необходимо точно контролировать количество света, попадающего на пленку. Если вы пропустите слишком много света, слишком много зерен среагирует, и изображение будет размытым. Если вы не позволите достаточному количеству света попасть на пленку, будет реагировать слишком мало зерен, и изображение будет слишком темным. В следующем разделе мы рассмотрим различные механизмы камеры, позволяющие регулировать экспозицию.

Реклама

Камеры: правильный свет

В предыдущем разделе мы видели, что вам необходимо тщательно контролировать экспозицию пленки, иначе изображение получится слишком темным или слишком ярким. Так как же настроить этот уровень экспозиции? Вы должны учитывать два основных фактора:

  • Сколько света проходит через объектив
  • Как долго экспонируется пленка

Чтобы увеличить или уменьшить количество света, проходящего через объектив, вы должны изменить размер апертура — отверстие объектива. Это работа ирисовой диафрагмы , ряда перекрывающихся металлических пластин, которые могут складываться друг на друга или расширяться. По сути, этот механизм работает так же, как радужная оболочка вашего глаза — она открывается или закрывается по кругу, уменьшая или увеличивая диаметр хрусталика. Когда объектив меньше, он улавливает меньше света, а когда он больше, он улавливает больше света.

Реклама

Продолжительность воздействия определяется выдержка . В большинстве зеркальных камер используется затвор в фокальной плоскости . Этот механизм очень прост — он в основном состоит из двух «занавесок» между объективом и пленкой. Перед тем, как сделать снимок, первая шторка закрывается, чтобы на пленку не попадал свет. Когда вы делаете снимок, эта занавеска открывается. Через определенное время вторая шторка опускается с другой стороны, чтобы остановить экспозицию.

Когда вы нажимаете кнопку спуска затвора камеры, открывается первая шторка, обнажая пленку. Через определенное время второй затвор закрывается, завершая экспозицию. Временная задержка регулируется ручкой выдержки камеры.

Это простое действие управляется сложной массой шестеренок, переключателей и пружин, как в часах. Когда вы нажимаете кнопку спуска затвора , она освобождает рычаг, который приводит в движение несколько шестеренок. Вы можете подтянуть или ослабить некоторые пружины, повернув ручку выдержки. Это регулирует зубчатый механизм, увеличивая или уменьшая задержку между открытием первой шторы и закрытием второй шторы. Когда вы устанавливаете ручку на очень медленную скорость затвора, затвор остается открытым в течение очень долгого времени. Когда вы устанавливаете ручку на очень высокую скорость, вторая шторка следует непосредственно за первой шторкой, поэтому в любой момент времени экспонируется только крошечная щель кадра пленки.

Идеальная экспозиция зависит от размера светочувствительных зерен на пленке. Зерно большего размера с большей вероятностью поглощает фотоны света, чем зерно меньшего размера. На размер зерен указывает скорость пленки , которая напечатана на канистре. Разная чувствительность пленки подходит для разных типов фотографии: например, пленка 100 единиц ISO оптимальна для съемки при ярком солнечном свете, а пленка 1600 единиц следует использовать только при относительно слабом освещении.

«» Внутри ручной зеркальной камеры вы найдете запутанную головоломку из шестеренок и пружин. Нажмите на каждое изображение, чтобы сделать крупный план в высоком разрешении.

Как видите, правильная экспозиция требует много усилий — вы должны сбалансировать светочувствительность пленки, размер диафрагмы и выдержку, чтобы соответствовать уровню освещенности в кадре. В зеркальных камерах с ручным управлением есть встроенный экспонометр, который поможет вам в этом. Основным компонентом люксметра является панель полупроводниковых датчиков света, чувствительных к световой энергии. Эти датчики выражают эту световую энергию как электрическую энергию, которую система экспонометра интерпретирует на основе пленки и скорости затвора.

Теперь давайте посмотрим, как корпус зеркальной фотокамеры направляет реальное изображение в видоискатель до того, как вы сделаете снимок, а затем направляет его на пленку, когда вы нажимаете кнопку спуска затвора.

Реклама

Зеркальные камеры против «наведи и снимай»

На рынке представлены два типа потребительских пленочных камер — зеркальные камеры и камеры типа «наведи и снимай». Основное отличие заключается в том, как фотограф видит сцену. В камере типа «наведи и снимай» видоискатель представляет собой простое окошко в корпусе камеры. Вы не видите реального изображения, формируемого объективом камеры, но вы получаете приблизительное представление о том, что находится в поле зрения.

В зеркальной камере вы видите действительное реальное изображение, которое увидит пленка. Если вы снимите объектив с зеркальной камеры и заглянете внутрь, вы увидите, как это работает. Камера имеет наклонное зеркало, расположенное между затвором и объективом, с кусочком полупрозрачного стекла и призмой над ним. Эта конфигурация работает как перископ — реальное изображение отражается от нижнего зеркала на полупрозрачное стекло, которое служит проекционным экраном. Работа призмы состоит в том, чтобы перевернуть изображение на экране, чтобы оно снова появилось правильной стороной, и перенаправить его в окно видоискателя.

Реклама

Когда вы нажимаете кнопку спуска затвора, камера быстро убирает зеркало в сторону, поэтому изображение направляется на экспонированную пленку. Зеркало подключено к системе таймера затвора, поэтому оно остается открытым, пока открыт затвор. Вот почему видоискатель внезапно затемняется, когда вы делаете снимок.

«» Зеркало в зеркальной камере направляет реальное изображение в видоискатель. Когда вы нажимаете кнопку спуска затвора, зеркало поднимается, и на пленку проецируется реальное изображение.

В камерах такого типа зеркало и полупрозрачный экран настроены таким образом, что они представляют реальное изображение точно таким, каким оно появится на пленке. Преимущество этого дизайна в том, что вы можете настроить фокус и скомпоновать сцену, чтобы получить именно то изображение, которое вы хотите. По этой причине профессиональные фотографы обычно используют зеркальные камеры.

В наши дни большинство зеркальных камер оснащены как ручным, так и автоматическим управлением, а большинство компактных камер полностью автоматические. Концептуально автоматические камеры очень похожи на полностью ручные модели, но все управляется центральным микропроцессором, а не пользователем. Центральный микропроцессор получает информацию от системы автофокусировки и экспонометра. Затем он активирует несколько небольших моторов, которые регулируют положение объектива, а также открывают и закрывают диафрагму. В современных камерах это довольно продвинутая компьютерная система.

«» В автоматической камере «наведи и снимай» вместо шестерен и пружин используются печатные платы и электродвигатели.

В следующем разделе мы рассмотрим другой конец спектра — конструкцию камеры без сложных механизмов, без объектива и практически без движущихся частей.

Реклама

htm»> Самодельные камеры

Как мы видели в этой статье, даже самая простая, полностью ручная зеркальная фотокамера представляет собой сложную замысловатую машину. Но камеры сами по себе не сложны — на самом деле, основные элементы настолько просты, что вы можете сделать их сами, используя всего несколько недорогих материалов.

Самая простая самодельная камера не использует линзу для создания реального изображения — она собирает свет с крошечным отверстием. Эти камеры-обскуры просты в изготовлении и очень интересны в использовании — единственная трудность заключается в том, что вам нужно самостоятельно проявлять пленку.

Реклама

Камера-обскура — это просто коробка с крошечным отверстием на одной стороне и пленкой или фотобумагой на противоположной стороне. Если в остальном коробка «светонепроницаема», свет, проходящий через точечное отверстие, формирует реальное изображение на пленке. Научный принцип, лежащий в основе этого, очень прост.

Если посветить фонариком в темной комнате через маленькое отверстие в широком куске картона, свет образует точку на противоположной стене. Если вы переместите фонарик, светящаяся точка тоже будет двигаться — лучи света от фонарика проходят через отверстие по прямой линии.

В большой визуальной сцене каждая конкретная видимая точка действует как этот фонарик. Свет отражается от каждой точки объекта и распространяется во всех направлениях. Небольшое отверстие пропускает узкий луч из каждой точки сцены. Лучи движутся по прямой линии, поэтому световые лучи из нижней части сцены попадают на верхнюю часть куска пленки, и наоборот. Таким образом, на противоположной стороне коробки формируется перевернутое изображение сцены. Поскольку отверстие такое маленькое, вам потребуется довольно длительное время экспозиции, чтобы пропустить достаточно света.

Есть несколько способов сделать такую ​​камеру — некоторые энтузиасты даже использовали старые холодильники и автомобили в качестве светонепроницаемых коробок. В одном из самых популярных дизайнов используется обычная цилиндрическая коробка из-под овсяных хлопьев, кофейная банка или аналогичный контейнер. Проще всего использовать картонный контейнер со съемной пластиковой крышкой.

Вы можете собрать эту камеру, выполнив несколько простых шагов:

  1. Первое, что нужно сделать, это покрасить крышку в черный цвет внутри и снаружи . Это помогает защитить коробку от света. Обязательно используйте матовая черная краска вместо глянцевой краски, которая будет отражать больше света.
  2. Вырежьте небольшое отверстие (размером со спичечный коробок) в центре дна канистры (несъемная сторона).
  3. Вырежьте кусок плотной алюминиевой фольги или плотной черной бумаги размером примерно в два раза больше отверстия в дне канистры.
  4. Возьмите швейную иглу № 10 и аккуратно проделайте отверстие в центре фольги . Вы должны ввести иглу только наполовину, иначе отверстие будет слишком большим. Для достижения наилучших результатов поместите фольгу между двумя каталожными карточками и вращайте иглу, проталкивая ее.
  5. Заклейте фольгой отверстие в нижней части канистры так, чтобы отверстие оказалось по центру. Надежно закрепите фольгу черной лентой , чтобы свет попадал только через точечное отверстие.
  6. Все, что вам нужно для шторки , это лист плотной черной бумаги, достаточно большой, чтобы закрыть большую часть дна канистры. Надежно прикрепите одну сторону бумаги к боковой части дна канистры , чтобы получился клапан над отверстием посередине. Заклейте другую сторону клапана с другой стороны отверстия лентой.0134 . Держите крышку закрытой, пока не будете готовы сделать снимок.
  7. Чтобы загрузить камеру, прикрепите любую пленку или фотобумагу к внутренней стороне крышки канистры . Конечно, чтобы пленка работала, вы должны загрузить ее и проявить в полной темноте. С такой конструкцией камеры вы не сможете просто отдать пленку в аптеку — вам придется проявить ее самостоятельно или попросить кого-нибудь помочь вам.

Выбор хорошей конструкции камеры, типа пленки и времени выдержки во многом является методом проб и ошибок. Но, как скажет вам любой энтузиаст пинхола, это экспериментирование — самое интересное в создании собственной камеры. Чтобы узнать больше о пинхол-фотографии и увидеть отличные конструкции камер, посетите некоторые из сайтов, перечисленных на следующей странице.

На протяжении всей истории фотографии существовали сотни различных систем камер. Но удивительно, что все эти конструкции — от самой простой самодельной коробчатой ​​камеры до новейшей цифровой камеры — сочетают в себе одни и те же основные элементы: систему линз для создания реального изображения, светочувствительный датчик для записи реального изображения и механический датчик. система для управления тем, как реальное изображение экспонируется датчиком. И когда вы приступите к делу, это все, что нужно для фотографии!

Для получения дополнительной информации о камерах, свете, пленке и связанных темах перейдите по ссылкам ниже.

Реклама

Часто задаваемые вопросы о камере

Могу ли я загрузить камеру для своего компьютера?

Если в компьютер встроена камера, обычно на нем уже установлена ​​программа, необходимая для ее запуска. Вы можете загрузить бесплатное программное обеспечение, такое как Windows Camera, если вам нужна программа. Однако, если на вашем компьютере нет камеры, вам необходимо приобрести внешнюю веб-камеру.

Как получить доступ к Google Camera?

Камера Google входит в стандартную комплектацию всех смартфонов Google. Вы должны иметь доступ к нему, найдя приложение на своем телефоне и щелкнув его.

Какой фотоаппарат лучше всего подходит для фотографии?

Выбор лучшей камеры для фотографии очень субъективен. Тем не менее, Sony a6100, Canon EOS Rebel T8i и Nikon D3500 — отличные цифровые камеры, подходящие для начинающих фотографов и фотографов среднего уровня.

Открытая камера бесплатна?

Open Camera, приложение для Android, которое можно загрузить и использовать совершенно бесплатно.

Сколько стоит веб-камера?

Вы можете получить хорошую веб-камеру менее чем за 100 долларов, при этом большинство вариантов стоит около 70 долларов.

Как устроен объектив фотоаппарата: Как устроен объектив. Практическая фотография

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх