Depth of field что это – Настройки графики в играх: на что они влияют?

Содержание

Настройки графики в играх: на что они влияют?

©

В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

 

Анизотропная фильтрация
Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.

http://itc.ua/files/pics/pp-01s.jpg
http://itc.ua/files/pics/pp-01s.jpghttp://itc.ua/files/pics/pp-02s.jpg

трилинейная

анизотропная

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизотропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры
Шейдеры это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами.

Parallax mapping
Parallax mapping это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

http://itc.ua/files/pics/pp-03v.jpghttp://itc.ua/files/pics/pp-03v.jpg

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing
До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

http://itc.ua/files/pics/pp-04s.jpghttp://itc.ua/files/pics/pp-04s.jpghttp://itc.ua/files/pics/pp-05s.jpghttp://itc.ua/files/pics/pp-05s.jpg

AA off AA on

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция
С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

http://itc.ua/files/pics/pp-07s.jpghttp://itc.ua/files/pics/pp-07s.jpghttp://itc.ua/files/pics/pp-07s.jpg
http://itc.ua/files/pics/pp-07s.jpg

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х годов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

http://itc.ua/files/pics/pp-08s.jpghttp://itc.ua/files/pics/pp-08s.jpg

Если частота обновления монитора составляет 60 Гц, и видеокарта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя уже другим, сдвинутым относительно предыдущего.

Post-processing
Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)
Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

http://itc.ua/files/pics/pp-09s.jpghttp://itc.ua/files/pics/pp-09s.jpghttp://itc.ua/files/pics/pp-10s.jpghttp://itc.ua/files/pics/pp-10s.jpg

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom
Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник Glow, именно поэтому эти три техники часто путают.

http://itc.ua/files/pics/pp-11.jpghttp://itc.ua/files/pics/pp-11.jpg

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain
Зернистость артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur
Motion Blur эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

http://itc.ua/files/pics/pp-12.jpghttp://itc.ua/files/pics/pp-12.jpghttp://itc.ua/files/pics/pp-13.jpghttp://itc.ua/files/pics/pp-13.jpg

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO
Ambient occlusion техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading
Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из  мультика.

http://itc.ua/files/pics/pp-14.jpghttp://itc.ua/files/pics/pp-14.jpg

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field
Глубина резкости это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

http://itc.ua/files/pics/pp-15.jpghttp://itc.ua/files/pics/pp-15.jpg

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280Ч800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680Ч1050).

Как уже упоминалось, анизотропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280Ч800; AA 8x; AF 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280Ч800; AA 2x; AF 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.

http://itc.ua/files/pics/pp-16.jpghttp://itc.ua/files/pics/pp-16.jpg

Источник

www.playground.ru

Настройки графики в играх: на что они влияют?

В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

Анизотропная фильтрация

Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.

трилинейнаяанизотропная

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизо­тропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку – коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры

Шейдеры – это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами. Например, в GeForce GTX 580 их целых 512 штук.

Parallax mapping

Parallax mapping – это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing

До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

AA offAA on

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция

С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х го­дов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync – это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

Если частота обновления монитора составляет 60 Гц, и видео­карта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя – уже другим, сдвинутым относительно предыдущего.

Post-processing

Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)

Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom

Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник – Glow, именно поэтому эти три техники часто путают.

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain

Зернистость – артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur

Motion Blur – эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO

Ambient occlusion – техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading

Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет, после выхода нашумевшего шутера XIII. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из детского мультика.

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field

Глубина резкости – это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280×800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680×1050).

Как уже упоминалось, анизо­тропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения – moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280×800; AA – 8x; AF – 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280×800; AA – 2x; AF – 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.

itc.ua

Depth Of Field — это… Что такое Depth Of Field?

  • depth of field — n. Optics a zone in which objects are in sharp focus [the larger the aperture, the shallower the depth of field] …   English World dictionary

  • depth of field — depth′ of field′ n. opt pht the range of distances along the axis of an optical instrument, usu. a camera lens, through which an object produces a relatively distinct image. Also called depth′ of fo′cus • Etymology: 1910–15 …   From formal English to slang

  • Depth of field — The area within the depth of field appears sharp, while the areas in front of and beyond the depth of field appear blurry …   Wikipedia

  • depth of field — the range of distances of the object in front of a camera lens or other image forming device measured along the axis of the device throughout which the image has acceptable sharpness * * * Optics, Photog. the range of distances along the axis of… …   Useful english dictionary

  • depth of field —   the depth of composition of a shot, i.e., where there are several planes (vertical spaces in a frame):   1) a foreground   2) a middle ground, and   3) a background; depth of field specifically refers to the area, range of distance, or field… …   Glossary of cinematic terms

  • Depth of Field — F/A/V The amount of space within lens view which will maintain acceptable focus at given settings (i.e. camera speed, film speed, lens aperture). (Cinematography) HD Depth of field is a term which refers to the areas of a picture both in front… …   Audio and video glossary

  • Depth-of-field — FilmM abbreviation is DOF. A term that refers to how much of the area in front of and behind your subject is in focus at any given time. If your subject is in focus and the background and foreground is out of focus, then you have a shallow depth… …   Audio and video glossary

  • depth of field — ryškumo gylis statusas T sritis fizika atitikmenys: angl. depth of field; depth of focus; focal depth vok. Fokustiefe, f; Schärfentiefe, f; Tiefenschärfe, f rus. глубина резкости, f pranc. netteté en profondeur, f; profondeur de champ, f;… …   Fizikos terminų žodynas

  • depth of field —    The distance range between the nearest and farthest objects that appear in acceptably sharp focus in a photograph. Depth of field depends on the lens opening, the focal length of the lens, and the distance from the lens to the subject …   Forensic science glossary

  • depth of field — Optics, Photog. the range of distances along the axis of an optical instrument, usually a camera lens, through which an object will produce a relatively distinct image. Also called depth of focus. [1910 15] * * * …   Universalium

  • depth of field — noun Optics the range of distances along the axis of a camera or other optical instrument, in which an object will produce a reasonably clear image. Also, depth of focus …   Australian English dictionary

  • normative_en_ru.academic.ru

    depth of field Википедия

    Глубина резко изображаемого пространства, Глубина резкости (ГРИП) — расстояние вдоль оптической оси объектива между двумя плоскостями в пространстве предметов, в пределах которого объекты отображаются в сопряжённой фокальной плоскости субъективно резко[1]. Непосредственно зависит от важнейших характеристик оптической системы: главного фокусного расстояния и относительного отверстия, а также от дистанции фокусировки. При этом абсолютно резко отображаются только объекты, расположенные в одной плоскости предметного пространства, соответствующей дистанции фокусировки[2].

    В повседневной речи понятие глубины резко изображаемого пространства обозначается более коротким выражением «глубина резкости». Однако, в оптике последнее обозначает другую величину, которая отсчитывается в пространстве изображений[1]. Её практическая оценка фотографами и кинооператорами не производится, но играет важную роль в прикладных сферах. Оценка глубины резко изображаемого пространства может производиться визуально на матовом стекле фотоаппарата прямого визирования или зеркального, а также на мониторе электронного видоискателя или по соответствующей шкале на оправе объектива и таблицам, составленным при расчёте оптической системы[3].

    Критерии глубины резкости[ | ]

    ru-wiki.ru

    Что такое глубина резкости

    Глубиной резкости изображаемого пространства (ГРИП) является такой диапазон расстояний на изображении, в котором предметы воспринимаются как резкие. Глубина резкости варьируется в зависимости от типа камеры, величины апертуры диафрагмы и дистанции фокусировки, хотя печатный размер и дистанция просмотра могут изменять наше восприятие глубины резкости. Эта глава призвана обеспечить лучшее интуитивное и техническое понимание фотографии и предоставляет калькулятор ГРИП, чтобы продемонстрировать, как она зависит от параметров настройки вашей камеры.


    Резкость изображения не меняется внезапно, она убывает постепенно. По сути, всё, что находится ближе или дальше дистанции фокусировки, постепенно теряет резкость — даже если это незаметно для глаза или для разрешающей способности камеры.

    Кружок нерезкости

    Поскольку не существует чётко заданной границы, для определения предельного размытия точки, после которого она воспринимается как нерезкая, используется более точный термин под названием «кружок нерезкости». Когда кружок нерезкости становится ощутим нашими глазами, эта область считается вышедшей за пределы глубины резкости и не является «приемлемо чёткой». Вышеприведенный кружок нерезкости был увеличен для простоты; в действительности он составляет ничтожную долю от площади сенсора камеры.

    Когда кружок нерезкости становится различим глазом? Допустимо чёткий кружок нерезкости определён как такой, который останется незаметным при увеличении для печати на стандартном размере 20×25 см и при наблюдении со стандартного расстояния порядка 30 см.

    При таких дистанции просмотра и печатном размере производители камер считают кружок нерезкости неразличимым, если он имеет диаметр не более 0.025 мм (после увеличения). В результате производители камер используют этот стандарт при маркировке глубины резкости на объективах (на примере f/22 для объектива 50 мм). В действительности человек с идеальным зрением может различить 1/3 этого размера или даже меньше, так что кружок нерезкости должен быть ещё меньше, чтобы обеспечить приемлемую чёткость.

    Для каждой комбинации печатного размера и дистанции обзора кружки нерезкости будут различны. В ранее приведенном примере размытых точек кружок нерезкости в действительности меньше разрешения вашего экрана для двух точек на любой из сторон дистанции фокусировки, и потому они находятся в глубине резкости. Иначе говоря, глубина резкости может основываться на моменте, когда кружок нерезкости превышает размер пикселя вашей цифровой камеры.

    Заметьте, что глубина резкости задаёт только максимальную величину кружка нерезкости и не описывает, что происходит с областями, не попавшими в фокус. Эти области называются «бокé» (слово имеет японское происхождение). Два изображения с одинаковой глубиной резкости могут иметь существенно различное боке, и оно зависит от формы диафрагмы объектива. В реальности форма кружка нерезкости обычно отличается от круглой, но приближается к таковой, пока он остаётся ничтожно малым. При увеличении для большинства объективов это будет многоугольник с 5-8 рёбрами.

    Управление глубиной резкости

    Хотя печатный размер и дистанция просмотра являются важными факторами, которые влияют на то, каким большим кружок нерезкости кажется нашим глазам, основными факторами, которые определяют, насколько велик кружок нерезкости будет на сенсоре вашей камеры, являются раскрытие диафрагмы и дистанция фокусировки. Большая диафрагма (меньшее число f-ступени) и меньшие дистанции фокусировки создадут меньшую глубину резкости. Следующий тест ГРИП был произведен при идентичной дистанции фокусировки с объективом 200 мм (320 мм поля зрения на 35 мм камере), при различных диафрагмах:

    Разъяснение: фокусное расстояние и глубина резкости

    Заметьте, что я не упомянул фокусное расстояние как фактор, влияющий на глубину резкости. Даже несмотря на то, что телеобъективы казалось бы создают намного меньшую глубину резкости, это происходит преимущественно потому, что они часто используются для увеличения предмета, к которому нельзя подойти ближе. Если объект займёт идентичную площадь в видоискателе (постоянное увеличение) как на широкоугольном, так и на телеобъективе, глубина резкости будет практически* независима от фокусного расстояния!  Конечно, это потребовало бы от вас подойти намного ближе для широкоугольного объектива или заметно отдалиться для телеобъектива, как продемонстрировано в следующей таблице глубин резкости:

    Фокусное расстояние (мм)Дистанция фокусировки (м)Глубина резкости (м)
    100.50.482
    201.00.421
    502.50.406
    1005.00.404
    200100.404
    400200.404

    Примечание: расчёты глубины резкости даны для диафрагмы f/4.0 на Canon EOS 30D
    (кроп-фактор 1.6) с использованием кружка нерезкости диаметром 0.0206 мм.

    Обратите внимание, для минимальных фокусных расстояний действительно есть небольшое изменение, однако этот эффект незначителен по сравнению как с диафрагмой, так и с дистанцией фокусировки. Даже несмотря на то, что общая глубина резкости практически неизменна, доля глубины резкости впереди и позади дистанции фокусировки изменяется с фокусным расстоянием, как показано ниже:

     Положение глубины резкости
    Фокусное расстояние (мм)ПозадиВпереди
    1070.2 %29.8 %
    2060.1 %39.9 %
    5054.0 %46.0 %
    10052.0 %48.0 %
    20051.0 %49.0 %
    40050.5 %49.5 %

    Это показывает ограниченность традиционной концепции ГРИП: она принимает во внимание только сам диапазон и не учитывает распределение глубины относительно фокальной плоскости, несмотря на то, что оба фактора могут повлиять на восприятие резкости. Широкоугольные объективы обеспечивают большую глубину резкости за фокальной плоскостью, нежели перед ней, что существенно для традиционной пейзажной и ландшафтной съёмки.

    С другой стороны, при постоянных точке съёмки и дистанции фокусировки объектив с большим фокусным расстоянием даст меньшую глубину резкости (даже несмотря на существенные отличия в итоговом изображении). Это более наглядно в повседневном применении, но связано это со степенью увеличения, а не с дистанцией фокусировки. Кажется, что для больших фокусных расстояний глубина резкости снижается, — потому что они сжимают перспективу. Это располагает фон намного ближе к переднему плану — даже если детали не становятся более чёткими. Глубина резкости также кажется меньшей у зеркальных камер, чем у компактных цифровых камер, поскольку зеркальные камеры требуют большего фокусного расстояния для получения аналогичного угла обзора.

    * Примечание: мы описываем глубину резкости как практически постоянную, поскольку существует ряд случаев, в которых это перестаёт быть истинным. Для дистанций фокусировки, приводящих к значительному увеличению, или в зоне около гиперфокального расстояния широкоугольные объективы могут обеспечить большую глубину резкости, чем телеобъективы. С другой стороны, для ситуаций большого увеличения традиционный расчёт ГРИП становится неточным по другой причине: фактор увеличения. Это в действительности приводит к смещению ГРИП на большинстве широкоугольных объективов и увеличивает её для теле- и макрообъективов. В другом отдельно взятом случае, около гиперфокального расстояния, увеличение ГРИП проявляется, поскольку широкоугольные объективы имеют большую заднюю ГРИП и потому проще достигают приемлемой чёткости на бесконечности для любой заданной дистанции фокусировки.

    Подсчёт ГРИП

    Чтобы подсчитать глубину резкости, нужно сперва определиться с максимальным допустимым кружком нерезкости. Он зависит от типа камеры (размер сенсора или плёнки) и от комбинации печатного размера и дистанции просмотра.

    Расчёты глубины резкости базово подразумевают, что для приемлемой чёткости размер кружка нерезкости не должен превышать 0.025 мм (как обсуждалось выше), однако люди с идеальным зрением способны различать треть этого размера. Если вы используете в качестве стандарта человеческого восприятия 0.025 мм, примите во внимание, что граница глубины резкости может оказаться недостаточно чёткой. Приведенный здесь калькулятор ГРИП основан на данном стандарте, но у меня есть также более гибкий калькулятор глубины резкости.

    Глубина фокуса и визуализация диафрагмы

    Ещё одним следствием кружка нерезкости является концепция глубины фокуса (называемая также «пространством фокуса»). Она отличается от глубины резкости тем, что описывает диапазон, в котором свет фокусируется на сенсоре камеры, в отличие от количества изображения в фокусе. Это важно, поскольку определяет границы того, насколько горизонтально/вертикальна должна быть плёнка или цифровой сенсор, чтобы достичь требуемого фокуса на всех частях изображения.

    Диаграмма показывает зависимость глубины фокуса от диафрагмы. Фиолетовые линии демонстрируют максимальные углы, на которых свет может потенциально попасть в диафрагму. Область фиолетового цвета показывает все возможные углы. Диаграмма может быть также использована для иллюстрации глубины резкости, но в этом случае вместо сенсора следует перемещать элементы объектива.

    Ключевая мысль такова: когда объект находится в фокусе, лучи света из одной точки сходятся в одну точку на сенсоре камеры. Если лучи достигают сенсора в других положениях (образуя диск вместо точки), объект окажется вне фокуса, и расфокусировка будет нарастать с изменением расстояния.

    Прочие соображения

    Почему бы просто не использовать минимальную диафрагму (максимальное число f), чтобы добиться наилучшей возможной глубины резкости? Помимо того, что это потребовало бы недостижимых без штатива выдержек, слишком маленькая диафрагма размывает изображение, порождая большой кружок нерезкости (или «кружок рассеивания») вследствие эффекта, называемого дифракцией — даже в фокальной плоскости. С уменьшением диафрагмы дифракция быстро становится более серьёзным ограничивающим фактором, чем глубина резкости. Несмотря на невероятную глубину резкости, стенопы именно по этой причине имеют ограниченную разрешающую способность.

    Для макросъёмки (большого увеличения) глубина резкости в действительности подвержена влиянию другого фактора: увеличения. Фактор увеличения равен 1 для внутренне симметричных (нормальных) объективов, но для широкоугольных и телеобъективов он будет больше или меньше 1, соответственно. Глубина резкости больше расчётной достигается, когда фактор увеличения меньше 1, и меньше расчётной, когда он больше 1. Проблема состоит в том, что производители обычно не указывают фактор увеличения объективов, и его можно только приблизительно оценить визуально.

    www.cambridgeincolour.com

    Как повысить FPS в играх — гайд по настройкам графики, как поднять низкий ФПС

    Игра на ПК в числе прочих дает одно важное преимущество: возможность настроить картинку «под себя», найти баланс между производительностью и качеством графики. Есть, правда, загвоздка: многие игроки не до конца понимают, на что влияет тот или иной параметр в настройках. Рассказываем, что к чему.

    Разрешение экрана

    Думаю, с понятием разрешения знакомы уже более-менее все игроки, но на всякий случай вспомним основы. Все же, пожалуй, главный параметр графики в играх.

    Изображение, которое вы видите на экране, состоит из пикселей. Разрешение — это количество пикселей в строке, где первое число — их количество по горизонтали, второе — по вертикали. В Full HD эти числа — 1920 и 1080 соответственно. Чем выше разрешение, тем из большего количества пикселей состоит изображение, а значит, тем оно четче и детализированнее.

    Влияние на производительность

    Очень большое.Увеличение разрешения существенно снижает производительность. Именно поэтому, например, даже топовая RTX 2080 TI неспособна выдать 60 кадров в 4K в некоторых играх, хотя в том же Full HD счетчик с запасом переваливает за 100. Снижение разрешения — один из главных способов поднять FPS. Правда, и картинка станет ощутимо хуже.

    В некоторых играх (например, в Titanfall) есть параметр так называемого динамического разрешения. Если включить его, то игра будет в реальном времени автоматически менять разрешение, чтобы добиться заданной вами частоты кадров.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Вертикальная синхронизация

    Если частота кадров в игре существенно превосходит частоту развертки монитора, на экране могут появляться так называемые разрывы изображения. Возникают они потому, что видеокарта отправляет на монитор больше кадров, чем тот может показать за единицу времени, а потому картинка рендерится словно «кусками».

    Вертикальная синхронизация исправляет эту проблему. Это синхронизация частоты кадров игры с частотой развертки монитора. То если максимум вашего монитора — 60 герц, игра не будет работать с частотой выше 60 кадров в секунду и так далее.

    Есть и еще одно полезное свойство этой опции — она помогает снизить нагрузку на «железо» — вместо 200 потенциальных кадров ваша видеокарта будет отрисовывать всего 60, а значит, загружаться не на полную и греться гораздо меньше.

    Впрочем, есть у Vsync и недостатки. Главная — очень заметный «инпут-лаг», задержка между вашими командами (например, движениями мыши) и их отображением в игре.

    Поэтому играть со включенной вертикальной синхронизацией в мультипеере противопоказано. Кроме того, если ваш компьютер «тянет» игру при частоте ниже, чем заветные 60 FPS, Vsync может автоматически «лочиться» уже на 30 FPS, что приведет к неслабым таким лагам.

    Лучший способ бороться с разрывами изображения на сегодняшний день — купить монитор с поддержкой G-Sync или FreeSync и соответствующую видеокарту Nvidia или AMD. Ни разрывов, ни инпут-лага.

    Влияние на производительность

    В общем и целом — никакого.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Сглаживание(Anti-aliasing)

    Если нарисовать из квадратных по своей природе пикселей ровную линию, она получится не гладкой, а с так называемыми «лесенками». Особенно эти лесенки заметны при низких разрешениях. Чтобы устранить этот неприятный дефект и сделать изображения более четким и гладким, и нужно сглаживание.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Здесь и далее — слева изображение с отключенной графической опцией (или установленной на низком значении), справа — с включенной (или установленной на максимальном значении).

    Технологий сглаживания несколько, вот основные:

    • Суперсэмплинг (SSAA) — самое эффективное сглаживание, но вместе с тем — жутко требовательное к ресурсам. Работает оно просто: ваша видеокарта рендерит картинку в гораздо более высоком разрешении, чем задано в настройках, а потом «ужимает» его обратно. Чем выше это значение, тем лучше сглаживание и тем выше нагрузка на компьютер. Грубо говоря, при значении SSAA 4X ваш ПК будет вынужден за одно и то же время обсчитать одну и ту же сцену четыре раза, а не один.
    • MSAA — мультисемплинг. По эффективности схож с SSAA, но работает совершенно по-другому (объяснить его простыми словами довольно сложно, но это, пожалуй, и не нужно), а потому менее требователен к ресурсам. Если компьютер позволяет, именно это сглаживание стоит пробовать включать в первую очередь. Картинка лишь едва-едва потеряет в четкости, зато лесенки почти исчезнут.
    • FXAA (Быстрое сглаживание) — более простой способ сглаживания. На всю картинку попросту накидывается размытие. Вообще не влияет на производительность, но добавляет в изображение очень много «мыла». В большинстве случаев уж лучше терпеть «лесенки», но тут кому как.
    • TXAA («Временное сглаживание») / MLAA («Морфологическое сглаживание») — то же самое, что MSAA, но еще эффективнее. Первый тип поддерживается видеокартами Nvidia, второй — AMD. Если в игре есть один из этих вариантов, лучше всего использовать именно его. Почти идеальный баланс между эффективностью и производительностью.
    Влияние на производительность

    От ничтожного (FXAA) до колоссального (SSAA). В среднем — умеренное.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Качество текстур

    Один из самых важных параметров в настройках игры. Поверхности всех предметов во всех современных трехмерных играх покрыты текстурами, а потому чем выше их качество и разрешение — тем четче, реалистичнее картинка. Даже самая красивая игра с ультра-низкими текстурами превратится в фестиваль мыловарения.

    Влияние на производительность

    Если в видеокарте достаточно видеопамяти, то практически никакого. Если же ее не хватает, вы получите ощутимые фризы и тормоза. 4 гигабайт VRAM хватает для подавляющего числа современных игр, но лучше бы в вашей следующей видеокарте памяти было 8 или хотя бы 6 гигабайт.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Анизотропная фильтрация

    Анизотропная фильтрация, или фильтрация текстур, добавляет поверхностям, на которые вы смотрите под углом, четкости. Особенно ее эффективность заметна на удаленных от игрока текстурах земли или стен.

    Чем выше степень фильтрации, чем четче будут поверхности в отдалении.

    Этот параметр влияет на общее качество картинки довольно сильно, но систему при этом практически не нагружает, так что в графе «фильтрация текстур» советуем всегда выставлять 8x или 16x. Билинейная и трилинейная фильтрации уступают анизотропной, а потому особенного смысла в них уже нет.

    Влияние на производительность

    Ничтожное.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Тесселяция

    Технология, буквально преображающая поверхности в игре, делающая их выпуклыми, рельефными, натуралистичными. В общем, тесселяция позволяет отрисовывать гораздо более геометрически сложные объекты. Просто посмотрите на скриншоты.

    Влияние на производительность

    Зависит от игры, от того, как именно движок применяет ее к объектам. Чаще всего — среднее.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Качество теней

    Все просто: чем выше этот параметр, тем четче и подробнее тени, отбрасываемые объектами. Добавить тут нечего. Иногда в играх также встречается параметр «Дальность прорисовки теней» (а иногда он «вшит» в общие настройки). Тут все тоже понятно: выше дальность — больше теней вдалеке.

    Влияние на производительность

    Зависит от игры. Чаще всего разница между низкими и средними настройками не столь велика, а вот ультра-тени способны по полной загрузить ваш ПК, поскольку в этом случае количество объектов, отбрасывающих реалистичные тени, серьезно вырастает.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Глобальное затенение (Ambient Occlusion)

    Один из самых важных параметров, влияющий на картинку разительным образом. Если вкратце, то AO помогает имитировать поведения света в трехмерном мире — а именно, затенять места, куда не должны попадать лучи: углы комнат, щели между предметами и стенами, корни деревьев и так далее.

    Существует два основных вида глобального затенения:

    • SSAO (Screen space ambient occlusion). Впервые появилось в Crysis — потому тот и выглядел для своего времени совершенно фантастически. Затеняются пиксели, заблокированные от источников света.

    • HBAO (Horizon ambient occlusion). Работает по тому же принципу, просто количество затененных объектов и зон гораздо больше, чем при SSAO.

    Влияние на производительность

    Очень высокое.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Глубина резкости (Depth of Field)

    То самое «боке», которое пытаются симулировать камеры большинства современных объектов. В каком-то смысле это имитация особенностей человеческого зрения: объект, на который мы смотрим, находится в идеальном фокусе, а объекты на фоне — размыты. Чаще всего глубину резкости сейчас используют в шутерах: обратите внимание, что когда вы целитесь через мушку, руки персонажа и часть ствола чаще всего размыты.

    Впрочем, иногда DoF только мешает — складывается впечатление, что у героя близорукость.

    Влияние на производительность

    Целиком и полностью зависит от игры. От ничтожного до довольно сильного (как, например, в Destiny 2).

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Bloom (Свечение)

    Этот параметр отвечает за интенсивность источников света в игре. Например, с включенным Bloom, свет, пробивающийся из окна в помещение, будет выглядеть куда ярче. А солнце создавать натуральные «засветы». Правда, некоторые игры выглядят куда реалистичнее без свечения — тут нужно проверять самому.

    Влияние на производительность

    Чаще всего — низкое.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    Motion Blur (Размытие в движении)

    Motion Blur помогает передать динамику при перемещениях объекта. Работает он просто: когда вы быстро двигаете камерой, изображение начинает «плыть». При этом главный объект (например, руки персонажа с оружием) остается четким.

    Влияние на прозводительность

    Ничтожное.

    Как повысить FPS в играх - гайд по настройкам графики, как поднять низкий ФПС

    _Скриншоты: _Gamespot

    kanobu.ru

    depth of field Википедия

    Глубина резко изображаемого пространства, Глубина резкости (ГРИП) — расстояние вдоль оптической оси объектива между двумя плоскостями в пространстве предметов, в пределах которого объекты отображаются в сопряжённой фокальной плоскости субъективно резко[1]. Непосредственно зависит от важнейших характеристик оптической системы: главного фокусного расстояния и относительного отверстия, а также от дистанции фокусировки. При этом абсолютно резко отображаются только объекты, расположенные в одной плоскости предметного пространства, соответствующей дистанции фокусировки[2].

    В повседневной речи понятие глубины резко изображаемого пространства обозначается более коротким выражением «глубина резкости». Однако, в оптике последнее обозначает другую величину, которая отсчитывается в пространстве изображений[1]. Её практическая оценка фотографами и кинооператорами не производится, но играет важную роль в прикладных сферах. Оценка глубины резко изображаемого пространства может производиться визуально на матовом стекле фотоаппарата прямого визирования или зеркального, а также на мониторе электронного видоискателя или по соответствующей шкале на оправе объектива и таблицам, составленным при расчёте оптической системы[3].

    Критерии глубины резкости

    Шкала глубины резкости современного фотообъектива с постоянным фокусным расстоянием. Белые штрихи обозначают границы резкого отображения для разных значений диафрагмы. Видно, что при установленной диафрагме f/11 и текущей дистанции наводки резко отображается пространство от 1 до 2 метров

    Глубина резкости не является абсолютной величиной, поскольку определяется, исходя из наименьшей разрешающей способности объектива, а также из условий наблюдения полученного изображения и возможностей человеческого зрения[4]. Критерием глубины резко изображаемого пространства служит кружок рассеяния, превышающий диаметр диска Эйри объектива, поскольку учитывается светорассеяние фотоэмульсии, снижающее разрешение. В свою очередь, размер кружков рассеяния, образующих изображение объекта съёмки, зависит от расстояния между ним и плоскостью наводки на резкость. Чем больше смещение от плоскости наводки, тем больше диаметр такого кружка и ниже резкость изображения. Точки предметов, расположенных вне плоскости фокусировки, могут изображаться субъективно резко, если диаметры соответствующих кружков рассеяния не превышают пороговую величину[5].

    Эта величина выбирается, исходя из соображения, что при рассматривании с расстояния наилучшего видения 25 сантиметров человеческий глаз воспринимает изображение резким, если кружок рассеяния меньше 0,1 мм. Диаметр принимается пороговым для крупноформатных негативов, предназначенных для контактной печати[3]. Малоформатные фотографические негативы, предназначенные для увеличения, допускают диаметр кружка рассеяния 0,03—0,05 мм., или 1/1000 диагонали кадра[6]. Для среднеформатных негативов 6×6 см. кружок рассеяния не должен превышать 0,075 мм. Эта величина рассчитана для фотоотпечатков средних размеров 13×18 и 18×24 см. При более крупных увеличениях предметы, расположенные в пределах расчётной глубины резкости могут оказаться нерезкими из-за превышения порогового значения, незаметного глазу[4]. Однако это компенсируется тем, что крупные снимки рассматриваются с большого расстояния.

    Для 35-мм кинонегатива по советским стандартам допускалось значения кружка рассеяния не более 0,03 мм, а для 16-мм — 0,015 мм[7]. В широкоформатном кинематографе расчётным считается такой же кружок рассеяния, как и на стандартной 35-мм киноплёнке. За рубежом принимались более крупные размеры кружка рассеяния: в США они составляли 0,05 мм (0,002 дюйма) для 35-мм киноплёнки, и 0,001 дюйма для 16-мм[7]. Все эти величины также рассчитаны, исходя из условий наблюдения готового изображения, которые зависят от размеров зрительного зала и стандартных экранов.

    Факторы глубины резкости

    Зависимость глубины резкости изображаемого пространства от относительного отверстия

    Глубина резко изображаемого пространства обратно пропорциональна фокусному расстоянию объектива и прямо пропорциональна диафрагменному числу[3]. ГРИП вариообъективов изменяется одновременно с фокусным расстоянием. Кроме того, глубина резкости прямо пропорциональна дистанции, на которую сфокусирован объектив. Максимальная глубина резкости достижима на бесконечности, которая для большинства объективов начинается с 15—20 метров. Напротив, при наводке на близко расположенные предметы большая глубина резкости достижима с трудом. Особенно это заметно при макросъёмке, когда зона резкого изображения может составлять доли миллиметра даже при сильном диафрагмировании.

    Из прямых зависимостей глубины резкости от фокусного расстояния и дистанции фокусировки вытекает ещё одна, косвенная: глубина резкости обратно пропорциональна увеличению изображения объекта съёмки в фокальной плоскости, то есть масштабу, с которым он отображается. Увеличение масштаба достижимо как приближением к снимаемому предмету, так и использованием более длиннофокусного объектива, что в обоих случаях приводит к сужению области пространства, отображаемого резко. В то же время, небольшое увеличение позволяет получить большую глубину резкости.

    В практической фото- и киносъёмке глубина резкости чаще регулируется при помощи апертурной диафрагмы с изменяемым относительным отверстием. Диафрагмирование объектива позволяет повысить глубину резкости при прочих равных условиях[8]. Получение небольшой глубины резкости возможно на сравнительно небольших дистанциях съёмки при помощи светосильной оптики с открытой диафрагмой. Возможность «отделить» объект от фона на больших удалениях 50—100 метров дают только светосильные телеобъективы, специально выпускаемые для спортивной фотографии.

    Чем больше формат негатива (сенсора), тем труднее достижима большая глубина резкости при том же масштабе изображения, поскольку приходится использовать более длиннофокусный объектив. Крупноформатные фотоаппараты для получения портрета, резко отображающего одновременно всю голову, требуют сильного диафрагмирования, в то время как на малоформатном негативе это достижимо даже при средних значениях диафрагмы. Видеокамеры, обладающие миниатюрной ПЗС-матрицей, обеспечивают огромную глубину резкости даже при съёмке крупным планом. Явление объясняется зависимостью фокусного расстояния, требуемого для получения изображения с определённым углом поля зрения, от размера кадрового окна. Уменьшение размера кадра для его заполнения изображением того же объекта съёмки позволяет использовать более короткофокусный объектив.

    Поэтому два снимка одного и того же объекта, сделанные камерами разных форматов в одинаковом масштабе с одного расстояния, при равном относительном отверстии объективов обладают различной глубиной резкости. Камера с меньшим размером кадра даёт более протяжённую глубину резкости, так как для получения аналогичного масштаба используется более короткофокусный объектив.

    Влияние подвижек фотоаппарата

    Описанные принципы зависимости глубины резкости справедливы только при строгой перпендикулярности оптической оси объектива к плоскости фотоматериала или матрицы. Наклон оси в результате подвижек изменяет картину распределения резкости из-за несовпадения плоскости резкого изображения с кадровым окном. Это может использоваться как для расширения зоны снимка, отображаемой резко, так и для её искусственного сужения[9].

    Возможности управления глубиной резкости при помощи подвижек характерны для карданных камер и фотоаппаратов, оснащённых шифт-объективом с возможностью уклона. Соблюдение принципа Шаймпфлюга позволяет отображать резко объекты, расположенные на разных расстояниях без диафрагмирования объектива[10]. Однако, глубина резкости при этом не увеличивается, а перемещается область пространства, отображаемого резко. Объекты вне этой зоны отображаются нерезкими, даже если находятся на одном расстоянии с резкими. Наклон оптической оси даёт эффект небольшой глубины резкости удалённых ландшафтов, обычно резких по всему полю кадра. В результате крупные объекты съёмки кажутся субъективно миниатюрными, похожими на макет или игрушку[11].

    Особенности цифровой фотографии

    Увеличение глубины резкости программным способом. Слева — два из шести исходных снимков, снятых с брекетингом фокуса; справа — готовый снимок, полученный в приложении «CombineZM»

    Шкалы глубины резкости, нанесённые на оправы большинства сменных фотообъективов, рассчитаны для фотоплёнки, эмульсия которой обладает светорассеянием, снижающим резкость изображения. Фотоматрицы влияют на разрешение в значительно меньшей степени, позволяя полнее использовать возможности этой же оптики, используемой с современными цифровыми зеркальными фотоаппаратами. Стандарты новейших объективов для DSLR в 1,5 раза строже, и исходят из размера кружка нерезкости, составляющего 1/1500 диагонали полнокадровой матрицы, то есть 28 микрометров[12]. Глубина резкости, определяемая по таким шкалам, вполне соответствует наиболее массовому формату фотоотпечатка 10×15 см. Для более крупных снимков и изображения на мониторе компьютера она оказывается завышенной, поскольку современные сенсоры обеспечивают более высокую разрешающую способность, чем плёнка[12]. В ещё большей степени несоответствие таких шкал проявляется при использовании фотоматриц уменьшенных размеров APS-C и Nikon DX. Для учёта современных технических возможностей могут использоваться альтернативные калькуляторы глубины резкости, рассчитанные исходя из размера пикселя матрицы[13].

    Существующие технологии цифровой фотографии также позволяют значительно увеличить глубину резкости за счёт объединения нескольких фотографий, снятых с различными дистанциями фокусировки объектива (брекетинг фокуса). В настоящий момент доступны специальные компьютерные приложения, позволяющие склеивать снимки с переменной фокусировкой[14][15][16]. Такая техника, получившая название англ. Focus Stacking, получила распространение в прикладной научной фотографии, главным образом в макро- и микрофотографии, поскольку пригодна только для съёмки неподвижных объектов. Новейшая технология камеры светового поля позволяет регулировать дистанцию фокусировки и глубину резкости изображения уже после съёмки программными методами[17].

    Последние модели смартфонов Nokia с 2013 года оснащаются встроенной камерой с возможностью управления глубиной резкости, получившей торговое название «Refocus»[18]. При этом фокусировка может быть изменена после съёмки, что особенно эффективно для сцен, протяжённых в глубину.

    Расчёт ГРИП

    Диаграмма, иллюстрирующая зависимость глубины резкости от относительного отверстия. Точки 1 и 3, находящиеся не в фокусе, при закрытой диафрагме 4 дают кружки рассеяния меньшего диаметра

    Передняя и задняя границы резко изображаемого пространства могут быть определены по формулам[7]:

    R1=R⋅f2f2−K⋅f⋅z+K⋅R⋅z{\displaystyle R_{1}={\frac {R\cdot f^{2}}{f^{2}-K\cdot f\cdot z+K\cdot R\cdot z}}};
    R2=R⋅f2f2+K⋅f⋅z−K⋅R⋅z{\displaystyle R_{2}={\frac {R\cdot f^{2}}{f^{2}+K\cdot f\cdot z-K\cdot R\cdot z}}}, где

    R1{\displaystyle R_{1}} — дистанция до передней границы резко изображаемого пространства;

    R{\displaystyle R} — дистанция фокусировки;

    R2{\displaystyle R_{2}} — дистанция до задней границы резко изображаемого пространства;

    f{\displaystyle f} — заднее главное фокусное расстояние объектива в метрах;

    K{\displaystyle K} — знаменатель геометрического относительного отверстия объектива или диафрагменное число;

    z{\displaystyle z} — диаметр кружка нерезкости или допустимый кружок рассеяния, для негативов форматом 24×36 мм равный 0,03—0,05 мм (в формулу подставляется значение в метрах).

    Значения R1{\displaystyle R_{1}}, R{\displaystyle R}, R2{\displaystyle R_{2}} отсчитываются от фокальной плоскости фотоаппарата (где располагается фотоматериал или фотоматрица). Глубина резко изображаемого пространства P{\displaystyle P} определяется разностью между задней и передней границами резкости:

    P=R2−R1{\displaystyle P=R_{2}-R_{1}}

    Гиперфокальное расстояние

    Расстояние, на которое сфокусирован объектив, когда задняя граница резко изображаемого пространства лежит в «бесконечности» для данного геометрического относительного отверстия, называется «гиперфокальным»[19][20][21][3]. Понятие гиперфокального расстояния важно в практической фотографии и киносъёмке потому, что обеспечивает максимально возможную глубину резкости, расположенную от бесконечности до половины расстояния фокусировки.

    При ландшафтной съёмке короткофокусной оптикой наилучшая резкость достигается при фокусировке объектива не на «бесконечность», а на гиперфокальное расстояние. Упрощённо это достигается совмещением символа «бесконечности» шкалы фокусировки с делением шкалы глубины резкости, соответствующим текущей диафрагме[22]. Тогда передняя граница резко изображаемого пространства будет находиться на расстоянии, равном половине дистанции наводки[21]. При расположении объектов съёмки не ближе этого расстояния всё изображаемое пространство на фотографии будет практически резким с учётом размеров кружка рассеяния. Большинство широкоугольных объективов для малоформатных фотоаппаратов и 35-мм кинокамер при фокусировке на гиперфокальное расстояние отображают резкими предметы практически на любых дистанциях. До появления эффективных систем автофокуса этим явлением пользовались при репортажной и спортивной съёмке, когда времени на точную фокусировку недостаточно.

    Компактные устройства с небольшим размером кадра и короткофокусным объективом, такие как веб-камеры, экшн-камеры, камерафоны и камеры видеонаблюдения, зачастую не требуют фокусировки за счёт неподвижной установки объектива типа фикс-фокус на гиперфокальное расстояние. То же относится к простейшим фотоаппаратам и кинокамерам. Гиперфокальное расстояние для каждого объектива индивидуально и зависит от текущего диафрагменного числа. Вычисляется по формуле:

    H=f2Kz+f{\displaystyle H={\frac {f^{2}}{Kz}}+f}[20], где

    f{\displaystyle f} — фокусное расстояние;

    K{\displaystyle K} — знаменатель относительного отверстия;

    z{\displaystyle z} — диаметр кружка рассеяния;

    H{\displaystyle H} — гиперфокальное расстояние.

    Для практических расчётов можно воспользоваться упрощённой формулой:

    H=f2Kz{\displaystyle H={\frac {f^{2}}{Kz}}}

    При фотографировании бесконечности использование гиперфокального расстояния упрощает формулы расчета границ резко изображаемого пространства[23]:

    R1=HRH+R{\displaystyle R_{1}={\frac {HR}{H+R}}};
    R2=HRH−R{\displaystyle R_{2}={\frac {HR}{H-R}}}, где

    R1{\displaystyle R_{1}} — передняя граница резко изображаемого пространства;

    R{\displaystyle R} — расстояние, на которое производится наводка на резкость;

    R2{\displaystyle R_{2}} — задняя граница резко изображаемого пространства;

    H{\displaystyle H} — гиперфокальное расстояние при данном относительном отверстии.

    Из формул следует, что зона резкости по протяженности больше от плоскости наводки до задней границы резкости, чем от плоскости наводки до передней границы резкости.

    Для определения плоскости наводки R{\displaystyle R} при заданных передней и задней границах резкости пользуются формулой:

    R=2R1R2R1+R2{\displaystyle R={\frac {2R_{1}R_{2}}{R_{1}+R_{2}}}}

    Практическое значение глубины резкости

    Фотографии, снятые в одинаковом масштабе камерафоном (вверху) и фотоаппаратом с матрицей APS-C

    Большая глубина резкости, необходимая для точного отображения деталей, не всегда рассматривается как достоинство снимка. Выделение главного объекта съёмки резкостью в художественной фотографии и кинематографе традиционно используется как выразительное средство, наряду с тональной и линейной перспективой[24].

    Для классических фото- и кинокамер с большим размером кадра характерна небольшая глубина резкости, позволяющая эффективно использовать этот приём. Особенно удобны в этом отношении полнокадровые цифровые зеркальные фотоаппараты и цифровые кинокамеры формата «Супер-35». Специальные портретные объективы относятся к группе длиннофокусных и обладают небольшой глубиной резкости. Напротив, миниатюризация техники и распространение мобилографии характерны тенденцией роста глубины резкости, легко достижимой при небольших фокусных расстояниях. Это позволяет в большинстве таких устройств обходиться без фокусировки, но влияет на эстетику изображения, лишённого объёма.

    Имитация глубины резкости часто используется в трёхмерной графике и компьютерных играх для придания изображению достоверного «оптического» вида. Кроме того, это помогает сосредоточить внимание игрока на главном объекте или персонаже. На специализированных сайтах данный эффект обычно называется английским аналогом термина «глубина резкости» — Depth of Field, DOF[25].

    В то же время, современный кинематограф, развивающийся в направлении повышения зрелищности за счёт повсеместного распространения технологий 3D, обнаруживает тенденции к отказу от такого выразительного средства, как выделение резкостью при её малой глубине. Передача объёма достигается в стереокино другими путями, не требующими «классических» выразительных средств. Такой подход затрудняет постановку сложных сцен, например при съёмках фильма «Сталинград» по новейшим технологиям IMAX 3D, когда изображение снималось с расчётом достижения максимальной глубины резкости всего кадра[26]. Аналогичным образом создавалось изображение фантастического «Аватара»[27]. Современная операторская школа исходит из того, что большая глубина резкости позволяет полнее использовать достоинства объёмного изображения и повысить эффект присутствия.

    В традиционном «плоском» кинематографе кинооператоры предпочитают использовать сравнительно длиннофокусные киносъёмочные объективы. позволяющие выделять объект съёмки резкостью. Компактные видеокамеры с матрицей небольшого размера могут использовать кадр такой оптики полностью при помощи DOF-адаптеров с промежуточным изображением.

    См. также

    Источники

    1. 1 2 Фотокинотехника, 1981, с. 64.
    2. ↑ Общий курс фотографии, 1987, с. 23.
    3. 1 2 3 4 Общий курс фотографии, 1987, с. 24.
    4. 1 2 Глубина резко изображаемого пространства (рус.). Объективы. Zenit Camera. Дата обращения 7 июля 2014.
    5. ↑ Волосов, 1978, с. 65.
    6. ↑ Краткий справочник фотолюбителя, 1985, с. 37.
    7. 1 2 3 Гордийчук, 1979, с. 156.
    8. ↑ Хеджкоу, 2004, с. 16.
    9. ↑ Tilt/Shift: контроль глубины резкости (рус.). Cambridge in colour. Дата обращения 15 апреля 2013. Архивировано 22 апреля 2013 года.
    10. Д. Корн. Форматные камеры. Окончание (рус.). Статьи о фототехнике. Фотомастерские РСУ. Дата обращения 1 мая 2014. Архивировано 23 апреля 2013 года.
    11. ↑ Tilt-адаптеры (рус.). Статьи. Fotorox. Дата обращения 24 апреля 2014.
    12. 1 2 Владимир Медведев. Кружок нерезкости. Новый взгляд (рус.) (недоступная ссылка). Статьи. Персональный блог. Дата обращения 26 января 2014. Архивировано 6 июля 2013 года.
    13. ↑ Новый калькулятор глубины резкости (рус.) (недоступная ссылка). Medvedev. Дата обращения 4 июля 2014. Архивировано 15 ноября 2014 года.
    14. ↑ ImageFocus Stacking software (англ.) (недоступная ссылка). CMOS Cameras. Голландские микроскопы «Euromex». Дата обращения 5 июля 2014. Архивировано 29 июня 2014 года.
    15. ↑ Extended Depth of Field (англ.). Demos. Biomedical Imaging Group. Дата обращения 5 июля 2014.
    16. ↑ Focus Stacking Software Module for QuickPHOTO Programs (англ.). Deep Focus Module. Promicra. Дата обращения 5 июля 2014.
    17. ANNE STREHLOW. Computer scientists create a ‘light field camera’ that banishes fuzzy photos (англ.). Stanford News (3 November 2005). Дата обращения 5 июля 2014.
    18. Brad Molen. Nokia Camera and Refocus Lens (англ.). Nokia Lumia 1520 review. Engadget. Дата обращения 5 июля 2014.
    19. ↑ Фотокинотехника, 1981, с. 63.
    20. 1 2 Гордийчук, 1979, с. 157.
    21. 1 2 Волосов, 1978, с. 67.
    22. ↑ Краткий справочник фотолюбителя, 1985, с. 39.
    23. ↑ Гордийчук, 1979, с. 158.
    24. ↑ Что такое глубина резкости в фотографии? (рус.). «Про Фото». Дата обращения 6 марта 2012. Архивировано 27 мая 2012 года.
    25. Joe Demers. Chapter 23. Depth of Field: A Survey of Techniques (англ.). NVIDIA Developer Zone. Дата обращения 6 марта 2012. Архивировано 27 мая 2012 года.
    26. ↑ MediaVision, 2013, с. 18.
    27. ↑ Аватар. 3D IMAX (рус.). LiveJournal (30 декабря 2009). Дата обращения 6 июля 2014.

    Литература

    • Д. С. Волосов. Фотографическая оптика. — 2-е изд. — М.,: «Искусство», 1978. — С. 64—68. — 543 с.
    • Гордийчук О. Ф., Пелль В. Г. Раздел III. Киносъёмочные объективы // Справочник кинооператора / Н. Н. Жердецкая. — М.: «Искусство», 1979. — С. 143—173. — 440 с.
    • Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 64, 65. — 447 с.
    • Н. Д. Панфилов, А. А. Фомин. Краткий справочник фотолюбителя. — 3-е изд.. — М.,: «Искусство», 1985. — С. 33—46. — 367 с.
    • Фомин А. В. § 4. Фотографические объективы // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 23—25. — 256 с. — 50 000 экз.
    • Джон Хеджкоу. Фотография. Энциклопедия / М. Ю. Привалова. — М.: «РОСМЭН-ИЗДАТ», 2004. — 264 с. — ISBN 5-8451-0990-6.

    Ссылки

    wikiredia.ru

    Depth of field что это – Настройки графики в играх: на что они влияют?

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Пролистать наверх