Фокальный параметр это: Фокальный параметр | это… Что такое Фокальный параметр?

Содержание

Фокальный параметр | это… Что такое Фокальный параметр?

Кривая второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0,

в котором по крайней мере один из коэффициентов отличен от нуля.

Содержание

  • 1 История
  • 2 Инварианты
  • 3 Характеристическая квадратичная форма и характеристическое уравнение
  • 4 Классификация кривых второго порядка
    • 4.1 Невырожденные кривые
    • 4.2 Вырожденные кривые
  • 5 Диаметры и центр кривой второго порядка
  • 6 Главные оси и вершины кривой второго порядка
  • 7 Уравнения
    • 7.1 Общее уравнение в матричном виде
    • 7. 2 Канонический вид
    • 7.3 Через эксцентриситет
    • 7.4 Полярные координаты
    • 7.5 Кривая, заданная своими пятью точками
    • 7.6 Касательные и нормали
    • 7.7 Полюсы и поляры
  • 8 Теоремы, связанные с кривыми второго порядка
  • 9 См. также
  • 10 Ссылки
  • 11 Литература

История

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и провращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же сечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур (см. ниже).

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Еще позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижению второй космической скорости тело по параболе покинет поле притяжения Земли.

Инварианты

Вид кривой зависит от четырёх инвариантов:

  • инварианты относительно поворота и сдвига системы координат:
  • инвариант относительно поворота системы координат (полуинвариант):

Характеристическая квадратичная форма и характеристическое уравнение

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой

F0(x,y) = a11x2 + 2a12xy + a22y2.

Так, например, невырожденная кривая () оказывается действительным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли

F0(x,y) положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

или

λ2 − Δλ + D = 0.

Корни этого уравнения являются собственными значениями действительной симметричной матрицы

и, как следствие этого всегда действительны.

Классификация кривых второго порядка

Невырожденные кривые

Кривая второго порядка называется невырожденной, если Могут возникать следующие варианты:

  • Невырожденная кривая второго порядка называется центральной если
    • эллипс — при условии D > 0 и ΔI < 0;
      • частный случай эллипса — окружность — при условии I
        2 = 4D или a11 = a22,a12 = 0;
    • мнимый эллипс (ни одной действительной точки) — при условии ΔI > 0;
    • гипербола — при условии D < 0;
  • Невырожденная кривая второго порядка называется нецентральной если ΔI = 0
    • парабола — при условии D = 0.

Вырожденные кривые

Кривая второго порядка называется вырожденной, если Δ = 0. Могут возникать следующие варианты:

  • действительная точка на пересечении двух мнимых прямых (вырожденный эллипс) — при условии D > 0;
  • пара действительная пересекающихся прямых (вырожденная гипербола) — при условии D < 0;
  • вырожденная парабола — при условии D = 0:
    • пара действительных параллельных прямых — при условии
      B
      < 0;
    • одна действительная прямая (две слившиеся параллельные прямые) — при условии B = 0;
    • пара мнимых параллельных прямых (ни одной действительной точки) — при условии B > 0.

Диаметры и центр кривой второго порядка

Диаметром кривой второго порядка называется геометрическое место середин параллельных хорд этой кривой. Полученный таким образом диаметр называется сопряжённым этим хордам или их направлению. Диаметр, сопряжённый хордам, образующих угол θ с положительным направлением оси Ox, определяется уравнением:

Если выпоняется условие то все диаметры кривой пересекаются в одной точке — центре, а сама кривая называется центральной. В противном случае (D = 0) все диаметры кривой либо парралельны, либо совпадают.

Координаты центра определяются системой уравнений:

Решая эту систему относительно

x0 и y0, получим:

Если кривая центральная, то перенос начала координат в её центр приводит уравнение к виду

где — координаты относительно новой системы.

Главные оси и вершины кривой второго порядка

Главной осью кривой второго порядка называется её диаметр, перпендикулярный к сопряжённым к ним хордам. Этот диаметр является осью симметрии кривой. Каждая центральная кривая либо имеет две взаимно перпендикулярные оси, либо все диаметры являются главными осями. В последнем случае кривая является окружностью. Нецентральные кривые имеют лишь одну главную ось. Точки пересечения главной оси с самой кривой называются её вершинами.

Направляющие косинусы нормалей к главным осям удовлетворяют уравнениям

где λ — отличный от нуля корень характеристического уравнения. Направления главных осей и сопряжённых им хорд называются

главными направлениями кривой. Угол между положительным направлением оси Ox и каждым из двух главных направлений определяется формулой

Из всех видов кривых второго порядка только окружность имеет неопределённые главные направления.

Уравнения

Общее уравнение в матричном виде

Общее уравнение кривой можно записать в матричном виде

Канонический вид

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу). Параметры канонических уравнений весьма просто выражаются через инварианты и корни характеристического уравнения (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Вид кривойКаноническое уравнениеИнварианты
Невырожденные кривые ()
Эллипс
Гипербола
Парабола
Вырожденные кривые (Δ = 0)
Точка
Две пересекающиеся прямые
Две параллельные прямые
Одна прямаяx2 = 0

Для центральной кривой в каноническом виде её центр находится в начале координат.

Через эксцентриситет

Каноническое уравнение любой невырожденной кривой второго порядка при помощи подходящего преобразования начала координат может быть приведено к виду

В этом случае кривая проходит через начало новой системы координат, а ось Ox является осью симметрии кривой. Данное уравнение выражает тот факт, что невырожденная кривая второго порядка является геометрическим местом точек, отношение расстояний которых (эксцентриситет

) от данной точки (фокуса) и от данной прямой (директрисы) постоянно. Кроме того, при кривая является окружностью, при — эллипсом, при — параболой, при — гиперболой.

Уравнение директриссы кривой выражается уравнением а координаты фокуса Директрисса перпендикулярна оси симметрии, проходящей через фокус и вершину кривой (фокальная ось). Расстояние между фокусом и директриссой равно

Если кривая второго порядка центральная (эллипс или гипербола), то прямая

является осью симметрии и, следовательно, кривая имеет два фокуса и две директриссы.

Параметр p называется фокальным параметром и равен половине длины хорды, проходящей через фокус и перпендикулярной к фокальной оси (фокальная хорда).

Полярные координаты

Если взять в качестве полюса полярной системы координат фокус невырожденной кривой второго порядка, а в качестве полярной оси — её ось симетрии, то в полярных координатах ρ, φ уравнение кривой будет иметь вид

Кривая, заданная своими пятью точками

Кривая второго порядка вполне определяется пятью своими точками, если никакие четыре из них не лежат на одной прямой. Уравнение кривой, проходящей через точки и

Кривая, заданная пятью точками вырождается в том и только в том случае, когда три из заданных точек лежат на одной прямой.

Касательные и нормали

Уравнение касательной к кривой второго порядка f(x,y) в её точке имеет вид:

Уравнение нормали к кривой второго порядка в точке имеет вид

Полюсы и поляры

Уравнение

помимо касательной опряделяет прямую, называемую полярой точки относительно кривой второго порядка, независимо от того, лежит ли эта точка на кривой или нет. При этом точка называется

полюсом этой прямой. Поляра точки кривой есть её касательная в этой точке.

Теоремы о полюсах и полярах:

  1. Если прямая, проведённая через полюс P, пересекает поляру в точке Q, а кривую второго порядка — в точках R1 и R2, то точки P и Q гармонически разделяют отрезок R1R2, т. е. выполняется условие
  2. Если точка лежит на некоторой прямой, то её поляра проходит через полюс этой прямой. Если прямая проходит через некоторую точку, то её полюс лежит на поляре этой точки.
  3. Диаметр кривой второго порядка есть поляра бесконечно удалённой точки, через которую проходят сопряжённые ему хорды, а центр кривой есть полюс бесконечно удалённой прямой.
  4. Фокус кривой есть центр пучка, обладающего тем свойством, что полюс любой его прямой принадлежит перпендикулярной к ней прямой пучка. Директрисса есть поляра фокуса.

Из этих утверждений, в частности, следует, что:

  1. если через точку можно провести две касательные к кривой, то то поляра этой точки проходит через точки касания;
  2. касательные к кривой в концах диаметра параллельны сопряжённым ему хордам;
  3. точка пересечения касательных к кривой в концах любой её хорды, проходящей через фокус, лежит на директриссе;
  4. каждая хорда, проходящая через фокус, перпендикулярна к прямой, проведённой через её фокус и точку пересечения касательных в концах хорды.

Теоремы, связанные с кривыми второго порядка

  • Теорема Паскаля: точки пересечения противоположных сторон шестиугольника, вписанного в кривую второго порядка, лежат на одной прямой.
  • Теорема Брианшона: диагонали, проходящие через противоположные вершины шестиугольника, описанного около кривой второго порядка, пересекаются в одной точке.

См. также

  • Коническое сечение
  • Квадрика
  • Поверхности второго порядка

Ссылки

  • кривые второго порядка

Литература

  • Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64-69.

Фокальный параметр | это… Что такое Фокальный параметр?

Кривая второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0,

в котором по крайней мере один из коэффициентов отличен от нуля.

Содержание

  • 1 История
  • 2 Инварианты
  • 3 Характеристическая квадратичная форма и характеристическое уравнение
  • 4 Классификация кривых второго порядка
    • 4.1 Невырожденные кривые
    • 4.2 Вырожденные кривые
  • 5 Диаметры и центр кривой второго порядка
  • 6 Главные оси и вершины кривой второго порядка
  • 7 Уравнения
    • 7.1 Общее уравнение в матричном виде
    • 7.2 Канонический вид
    • 7.3 Через эксцентриситет
    • 7.4 Полярные координаты
    • 7.5 Кривая, заданная своими пятью точками
    • 7.6 Касательные и нормали
    • 7.7 Полюсы и поляры
  • 8 Теоремы, связанные с кривыми второго порядка
  • 9 См. также
  • 10 Ссылки
  • 11 Литература

История

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и провращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же сечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур (см. ниже).

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Еще позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижению второй космической скорости тело по параболе покинет поле притяжения Земли.

Инварианты

Вид кривой зависит от четырёх инвариантов:

  • инварианты относительно поворота и сдвига системы координат:
  • инвариант относительно поворота системы координат (полуинвариант):

Характеристическая квадратичная форма и характеристическое уравнение

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой

F0(x,y) = a11x2 + 2a12xy + a22y2.

Так, например, невырожденная кривая () оказывается действительным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли F0(x,y) положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

или

λ2 − Δλ + D = 0.

Корни этого уравнения являются собственными значениями действительной симметричной матрицы

и, как следствие этого всегда действительны.

Классификация кривых второго порядка

Невырожденные кривые

Кривая второго порядка называется невырожденной, если Могут возникать следующие варианты:

  • Невырожденная кривая второго порядка называется центральной если
    • эллипс — при условии D > 0 и ΔI < 0;
      • частный случай эллипса — окружность — при условии I2 = 4D или a11 = a22,a12 = 0;
    • мнимый эллипс (ни одной действительной точки) — при условии ΔI > 0;
    • гипербола — при условии D < 0;
  • Невырожденная кривая второго порядка называется нецентральной если ΔI = 0
    • парабола — при условии D = 0.

Вырожденные кривые

Кривая второго порядка называется вырожденной, если Δ = 0. Могут возникать следующие варианты:

  • действительная точка на пересечении двух мнимых прямых (вырожденный эллипс) — при условии D > 0;
  • пара действительная пересекающихся прямых (вырожденная гипербола) — при условии D < 0;
  • вырожденная парабола — при условии D = 0:
    • пара действительных параллельных прямых — при условии B < 0;
    • одна действительная прямая (две слившиеся параллельные прямые) — при условии B = 0;
    • пара мнимых параллельных прямых (ни одной действительной точки) — при условии B > 0.

Диаметры и центр кривой второго порядка

Диаметром кривой второго порядка называется геометрическое место середин параллельных хорд этой кривой. Полученный таким образом диаметр называется сопряжённым этим хордам или их направлению. Диаметр, сопряжённый хордам, образующих угол θ с положительным направлением оси Ox, определяется уравнением:

Если выпоняется условие то все диаметры кривой пересекаются в одной точке — центре, а сама кривая называется центральной. В противном случае (D = 0) все диаметры кривой либо парралельны, либо совпадают.

Координаты центра определяются системой уравнений:

Решая эту систему относительно x0 и y0, получим:

Если кривая центральная, то перенос начала координат в её центр приводит уравнение к виду

где — координаты относительно новой системы.

Главные оси и вершины кривой второго порядка

Главной осью кривой второго порядка называется её диаметр, перпендикулярный к сопряжённым к ним хордам. Этот диаметр является осью симметрии кривой. Каждая центральная кривая либо имеет две взаимно перпендикулярные оси, либо все диаметры являются главными осями. В последнем случае кривая является окружностью. Нецентральные кривые имеют лишь одну главную ось. Точки пересечения главной оси с самой кривой называются её вершинами.

Направляющие косинусы нормалей к главным осям удовлетворяют уравнениям

где λ — отличный от нуля корень характеристического уравнения. Направления главных осей и сопряжённых им хорд называются главными направлениями кривой. Угол между положительным направлением оси Ox и каждым из двух главных направлений определяется формулой

Из всех видов кривых второго порядка только окружность имеет неопределённые главные направления.

Уравнения

Общее уравнение в матричном виде

Общее уравнение кривой можно записать в матричном виде

Канонический вид

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу). Параметры канонических уравнений весьма просто выражаются через инварианты и корни характеристического уравнения (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Вид кривойКаноническое уравнениеИнварианты
Невырожденные кривые ()
Эллипс
Гипербола
Парабола
Вырожденные кривые (Δ = 0)
Точка
Две пересекающиеся прямые
Две параллельные прямые
Одна прямаяx2 = 0

Для центральной кривой в каноническом виде её центр находится в начале координат.

Через эксцентриситет

Каноническое уравнение любой невырожденной кривой второго порядка при помощи подходящего преобразования начала координат может быть приведено к виду

В этом случае кривая проходит через начало новой системы координат, а ось Ox является осью симметрии кривой. Данное уравнение выражает тот факт, что невырожденная кривая второго порядка является геометрическим местом точек, отношение расстояний которых (эксцентриситет) от данной точки (фокуса) и от данной прямой (директрисы) постоянно. Кроме того, при кривая является окружностью, при — эллипсом, при — параболой, при — гиперболой.

Уравнение директриссы кривой выражается уравнением а координаты фокуса Директрисса перпендикулярна оси симметрии, проходящей через фокус и вершину кривой (фокальная ось). Расстояние между фокусом и директриссой равно

Если кривая второго порядка центральная (эллипс или гипербола), то прямая

является осью симметрии и, следовательно, кривая имеет два фокуса и две директриссы.

Параметр p называется фокальным параметром и равен половине длины хорды, проходящей через фокус и перпендикулярной к фокальной оси (фокальная хорда).

Полярные координаты

Если взять в качестве полюса полярной системы координат фокус невырожденной кривой второго порядка, а в качестве полярной оси — её ось симетрии, то в полярных координатах ρ, φ уравнение кривой будет иметь вид

Кривая, заданная своими пятью точками

Кривая второго порядка вполне определяется пятью своими точками, если никакие четыре из них не лежат на одной прямой. Уравнение кривой, проходящей через точки и

Кривая, заданная пятью точками вырождается в том и только в том случае, когда три из заданных точек лежат на одной прямой.

Касательные и нормали

Уравнение касательной к кривой второго порядка f(x,y) в её точке имеет вид:

Уравнение нормали к кривой второго порядка в точке имеет вид

Полюсы и поляры

Уравнение

помимо касательной опряделяет прямую, называемую полярой точки относительно кривой второго порядка, независимо от того, лежит ли эта точка на кривой или нет. При этом точка называется полюсом этой прямой. Поляра точки кривой есть её касательная в этой точке.

Теоремы о полюсах и полярах:

  1. Если прямая, проведённая через полюс P, пересекает поляру в точке Q, а кривую второго порядка — в точках R1 и R2, то точки P и Q гармонически разделяют отрезок R1R2, т.  е. выполняется условие
  2. Если точка лежит на некоторой прямой, то её поляра проходит через полюс этой прямой. Если прямая проходит через некоторую точку, то её полюс лежит на поляре этой точки.
  3. Диаметр кривой второго порядка есть поляра бесконечно удалённой точки, через которую проходят сопряжённые ему хорды, а центр кривой есть полюс бесконечно удалённой прямой.
  4. Фокус кривой есть центр пучка, обладающего тем свойством, что полюс любой его прямой принадлежит перпендикулярной к ней прямой пучка. Директрисса есть поляра фокуса.

Из этих утверждений, в частности, следует, что:

  1. если через точку можно провести две касательные к кривой, то то поляра этой точки проходит через точки касания;
  2. касательные к кривой в концах диаметра параллельны сопряжённым ему хордам;
  3. точка пересечения касательных к кривой в концах любой её хорды, проходящей через фокус, лежит на директриссе;
  4. каждая хорда, проходящая через фокус, перпендикулярна к прямой, проведённой через её фокус и точку пересечения касательных в концах хорды.

Теоремы, связанные с кривыми второго порядка

  • Теорема Паскаля: точки пересечения противоположных сторон шестиугольника, вписанного в кривую второго порядка, лежат на одной прямой.
  • Теорема Брианшона: диагонали, проходящие через противоположные вершины шестиугольника, описанного около кривой второго порядка, пересекаются в одной точке.

См. также

  • Коническое сечение
  • Квадрика
  • Поверхности второго порядка

Ссылки

  • кривые второго порядка

Литература

  • Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64-69.

Фокальный параметр | это… Что такое Фокальный параметр?

Кривая второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0,

в котором по крайней мере один из коэффициентов отличен от нуля.

Содержание

  • 1 История
  • 2 Инварианты
  • 3 Характеристическая квадратичная форма и характеристическое уравнение
  • 4 Классификация кривых второго порядка
    • 4.1 Невырожденные кривые
    • 4.2 Вырожденные кривые
  • 5 Диаметры и центр кривой второго порядка
  • 6 Главные оси и вершины кривой второго порядка
  • 7 Уравнения
    • 7.1 Общее уравнение в матричном виде
    • 7.2 Канонический вид
    • 7.3 Через эксцентриситет
    • 7.4 Полярные координаты
    • 7.5 Кривая, заданная своими пятью точками
    • 7.6 Касательные и нормали
    • 7.7 Полюсы и поляры
  • 8 Теоремы, связанные с кривыми второго порядка
  • 9 См. также
  • 10 Ссылки
  • 11 Литература

История

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и провращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же сечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур (см. ниже).

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Еще позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижению второй космической скорости тело по параболе покинет поле притяжения Земли.

Инварианты

Вид кривой зависит от четырёх инвариантов:

  • инварианты относительно поворота и сдвига системы координат:
  • инвариант относительно поворота системы координат (полуинвариант):

Характеристическая квадратичная форма и характеристическое уравнение

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой

F0(x,y) = a11x2 + 2a12xy + a22y2.

Так, например, невырожденная кривая () оказывается действительным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли F0(x,y) положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

или

λ2 − Δλ + D = 0.

Корни этого уравнения являются собственными значениями действительной симметричной матрицы

и, как следствие этого всегда действительны.

Классификация кривых второго порядка

Невырожденные кривые

Кривая второго порядка называется невырожденной, если Могут возникать следующие варианты:

  • Невырожденная кривая второго порядка называется центральной если
    • эллипс — при условии D > 0 и ΔI < 0;
      • частный случай эллипса — окружность — при условии I2 = 4D или a11 = a22,a12 = 0;
    • мнимый эллипс (ни одной действительной точки) — при условии ΔI > 0;
    • гипербола — при условии D < 0;
  • Невырожденная кривая второго порядка называется нецентральной если ΔI = 0
    • парабола — при условии D = 0.

Вырожденные кривые

Кривая второго порядка называется вырожденной, если Δ = 0. Могут возникать следующие варианты:

  • действительная точка на пересечении двух мнимых прямых (вырожденный эллипс) — при условии D > 0;
  • пара действительная пересекающихся прямых (вырожденная гипербола) — при условии D < 0;
  • вырожденная парабола — при условии D = 0:
    • пара действительных параллельных прямых — при условии B < 0;
    • одна действительная прямая (две слившиеся параллельные прямые) — при условии B = 0;
    • пара мнимых параллельных прямых (ни одной действительной точки) — при условии B > 0.

Диаметры и центр кривой второго порядка

Диаметром кривой второго порядка называется геометрическое место середин параллельных хорд этой кривой. Полученный таким образом диаметр называется сопряжённым этим хордам или их направлению. Диаметр, сопряжённый хордам, образующих угол θ с положительным направлением оси Ox, определяется уравнением:

Если выпоняется условие то все диаметры кривой пересекаются в одной точке — центре, а сама кривая называется центральной. В противном случае (D = 0) все диаметры кривой либо парралельны, либо совпадают.

Координаты центра определяются системой уравнений:

Решая эту систему относительно x0 и y0, получим:

Если кривая центральная, то перенос начала координат в её центр приводит уравнение к виду

где — координаты относительно новой системы.

Главные оси и вершины кривой второго порядка

Главной осью кривой второго порядка называется её диаметр, перпендикулярный к сопряжённым к ним хордам. Этот диаметр является осью симметрии кривой. Каждая центральная кривая либо имеет две взаимно перпендикулярные оси, либо все диаметры являются главными осями. В последнем случае кривая является окружностью. Нецентральные кривые имеют лишь одну главную ось. Точки пересечения главной оси с самой кривой называются её вершинами.

Направляющие косинусы нормалей к главным осям удовлетворяют уравнениям

где λ — отличный от нуля корень характеристического уравнения. Направления главных осей и сопряжённых им хорд называются главными направлениями кривой. Угол между положительным направлением оси Ox и каждым из двух главных направлений определяется формулой

Из всех видов кривых второго порядка только окружность имеет неопределённые главные направления.

Уравнения

Общее уравнение в матричном виде

Общее уравнение кривой можно записать в матричном виде

Канонический вид

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу). Параметры канонических уравнений весьма просто выражаются через инварианты и корни характеристического уравнения (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Вид кривойКаноническое уравнениеИнварианты
Невырожденные кривые ()
Эллипс
Гипербола
Парабола
Вырожденные кривые (Δ = 0)
Точка
Две пересекающиеся прямые
Две параллельные прямые
Одна прямаяx2 = 0

Для центральной кривой в каноническом виде её центр находится в начале координат.

Через эксцентриситет

Каноническое уравнение любой невырожденной кривой второго порядка при помощи подходящего преобразования начала координат может быть приведено к виду

В этом случае кривая проходит через начало новой системы координат, а ось Ox является осью симметрии кривой. Данное уравнение выражает тот факт, что невырожденная кривая второго порядка является геометрическим местом точек, отношение расстояний которых (эксцентриситет) от данной точки (фокуса) и от данной прямой (директрисы) постоянно. Кроме того, при кривая является окружностью, при — эллипсом, при — параболой, при — гиперболой.

Уравнение директриссы кривой выражается уравнением а координаты фокуса Директрисса перпендикулярна оси симметрии, проходящей через фокус и вершину кривой (фокальная ось). Расстояние между фокусом и директриссой равно

Если кривая второго порядка центральная (эллипс или гипербола), то прямая

является осью симметрии и, следовательно, кривая имеет два фокуса и две директриссы.

Параметр p называется фокальным параметром и равен половине длины хорды, проходящей через фокус и перпендикулярной к фокальной оси (фокальная хорда).

Полярные координаты

Если взять в качестве полюса полярной системы координат фокус невырожденной кривой второго порядка, а в качестве полярной оси — её ось симетрии, то в полярных координатах ρ, φ уравнение кривой будет иметь вид

Кривая, заданная своими пятью точками

Кривая второго порядка вполне определяется пятью своими точками, если никакие четыре из них не лежат на одной прямой. Уравнение кривой, проходящей через точки и

Кривая, заданная пятью точками вырождается в том и только в том случае, когда три из заданных точек лежат на одной прямой.

Касательные и нормали

Уравнение касательной к кривой второго порядка f(x,y) в её точке имеет вид:

Уравнение нормали к кривой второго порядка в точке имеет вид

Полюсы и поляры

Уравнение

помимо касательной опряделяет прямую, называемую полярой точки относительно кривой второго порядка, независимо от того, лежит ли эта точка на кривой или нет. При этом точка называется полюсом этой прямой. Поляра точки кривой есть её касательная в этой точке.

Теоремы о полюсах и полярах:

  1. Если прямая, проведённая через полюс P, пересекает поляру в точке Q, а кривую второго порядка — в точках R1 и R2, то точки P и Q гармонически разделяют отрезок R1R2, т.  е. выполняется условие
  2. Если точка лежит на некоторой прямой, то её поляра проходит через полюс этой прямой. Если прямая проходит через некоторую точку, то её полюс лежит на поляре этой точки.
  3. Диаметр кривой второго порядка есть поляра бесконечно удалённой точки, через которую проходят сопряжённые ему хорды, а центр кривой есть полюс бесконечно удалённой прямой.
  4. Фокус кривой есть центр пучка, обладающего тем свойством, что полюс любой его прямой принадлежит перпендикулярной к ней прямой пучка. Директрисса есть поляра фокуса.

Из этих утверждений, в частности, следует, что:

  1. если через точку можно провести две касательные к кривой, то то поляра этой точки проходит через точки касания;
  2. касательные к кривой в концах диаметра параллельны сопряжённым ему хордам;
  3. точка пересечения касательных к кривой в концах любой её хорды, проходящей через фокус, лежит на директриссе;
  4. каждая хорда, проходящая через фокус, перпендикулярна к прямой, проведённой через её фокус и точку пересечения касательных в концах хорды.

Теоремы, связанные с кривыми второго порядка

  • Теорема Паскаля: точки пересечения противоположных сторон шестиугольника, вписанного в кривую второго порядка, лежат на одной прямой.
  • Теорема Брианшона: диагонали, проходящие через противоположные вершины шестиугольника, описанного около кривой второго порядка, пересекаются в одной точке.

См. также

  • Коническое сечение
  • Квадрика
  • Поверхности второго порядка

Ссылки

  • кривые второго порядка

Литература

  • Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64-69.

Фокусный параметр калькулятора эллипса

✖Малая полуось эллипса составляет половину длины наибольшей хорды, перпендикулярной линии, соединяющей фокусы эллипса.ⓘ Малая полуось эллипса [b]

AlnAngstromArpentAstronomical UnitAttometerAU of LengthBarleycornBillion Light YearBohr RadiusCable (International)Cable (UK)Cable (US)CaliberCentimeterChainCubit (Greek)Cubit (Long)Cubit (UK)DecameterDecimeterEarth Distance from MoonEarth Distance from SunEarth Equatorial RadiusEarth Polar RadiusElectron Radius (Classical)EllExameterFamnFathomFemtometerFermiFinger (Ткань)FingerbreadthFootFoot (US Survey)FurlongGigameterHandHandbreadthHectometerInchKenKilometerKiloparsecKiloyardLeagueLeague (Statute)Light YearLinkMegameterMegaparsecMeterMicroinchMicrometerMicronMilMileMile (Roman)Mile (US Survey)MillimeterMillion Light YearNail (Cloth)InteMileMile UKNautical League (int)Nautical League rnational)Морская миля (Великобритания)ПарсекОкуньПетаметрПикаПикометрPlanck LengthPointPoleQuarterReedReed (Long)RodRoman ActusRopeRussian ArchinSpan (ткань)Sun RadiusTerameterTwipVara CastellanaVara ConuqueraVara De TareaЯрдYoctometerYottameterZeptometerZettameter

+10%

-10%

✖lineear Excentricity Ellipse -это расстояние от центра до любого из фокусов эллипса. AlnAngstromArpentAstronomical UnitAttometerAU of LengthBarleycornBillion Light YearBohr RadiusCable (International)Cable (UK)Cable (US)CaliberCentimeterChainCubit (Greek)Cubit (Long)Cubit (UK)DecameterDecimeterEarth Distance from MoonEarth Distance from SunEarth Equatorial RadiusEarth Polar RadiusElectron Radius (Classical)EllExameterFamnFathomFemtometerFermiFinger (Cloth)FingerbreadthFootFoot (Обследование США)FurlongGigameterHandHandbreadthHectometerInchKenKilometerKiloparsecKiloyardLeagueLeague (Statute)Light YearLinkMegameterMegaparsecMeterMicroinchMicrometerMicronMilMileMile (Roman)Mile (US Survey)MillimeterMillion Light YearNail (ткань)NanometerNautical League (int)Nautical League UKNautical Mile (UK)Par Mile ОкуньПетаметрПикаПикометрПланк ДлинаТочкаПолюсКварталТростник (Длинный)РодРоман АктусВеревкаРусский АрчинПротяженность (Ткань)Солнце РадиусТераметрТвипВара КастелланаВара КонукераВара Де ТареаЯрдЙоктометрЙоттаметрЗептометрЗеттаметр

+10%

-10%

✖Фокусный параметр эллипса – это кратчайшее расстояние между любым из фокусов и соответствующей директрисой гиперболы. ⓘ Фокусный параметр эллипса [t]

AlnAngstromArpentAstronomical UnitAttometerAU of LengthBarleycornBillion Light YearBohr RadiusCable (International)Cable (UK)Cable (US)CaliberCentimeterChainCubit (Greek)Cubit (Long)Cubit (UK)DecameterDecimeterEarth Distance from MoonEarth Distance from SunEarth Equatorial RadiusEarth Polar RadiusElectron Radius (Classical)EllExameterFamnFathomFemtometerFermiFinger (Cloth)FingerbreadthFootFoot (US Survey)FurlongGigameterHandHandbreadthHectometerInchKenKilometerKiloparsecKiloyardLeagueLeague (Statute)Light YearLinkMegameterMegaparsecMeterMicroinchMicrometerMicronMilMileMile (Roman)Mile (US Survey)MillimeterMillion Light YearNail (Cloth)NanometerNautical League (int)Nautical League UKNautical Mile (International)Nautical Mile (UK)ParsecPerchPetameterPicaPicometerPlanck LengthPointPoleQuarterReedReed (Long)RodRoman ActusRopeRussian ArchinSpan ( Ткань)Sun RadiusTerameterTwipVara CastellanaVara ConuqueraVara De TareaYardYoctometerYottameterZeptometerZettameter

⎘ Копировать

👎

Формула

Перезагрузить

👍

Фокусный параметр Ellipse Solution

ШАГ 0: Сводка предварительного расчета

ШАГ 1: Преобразование входных данных в базовые единицы

Малая полуось эллипса: 6 метров —> 6 метров Преобразование не требуется
Линейный эксцентриситет эллипса: 8 метров — > 8 Метр Преобразование не требуется

ШАГ 2: Вычисление формулы

ШАГ 3: Преобразование результата в единицу измерения

4,5 Метр —> Преобразование не требуется

< 4 основных калькулятора эллипсов 92)/с

Что такое эллипс?

Эллипс в основном представляет собой коническое сечение. Если мы разрезаем прямой круговой конус плоскостью под углом, большим, чем полуугол конуса. Геометрически эллипс — это совокупность всех точек на плоскости, сумма расстояний до которых от двух фиксированных точек является константой. Эти фиксированные точки являются фокусами эллипса. Наибольшая хорда эллипса является большой осью, а хорда, проходящая через центр и перпендикулярно большой оси, является малой осью эллипса. Окружность является частным случаем эллипса, в котором оба фокуса совпадают в центре, и поэтому обе большие и малые оси становятся равными по длине, которая называется диаметром окружности. 92)/Линейный эксцентриситет эллипса для расчета фокусного параметра эллипса. Формула фокусного параметра эллипса определяется как кратчайшее расстояние между любым из фокусов и соответствующей директрисой гиперболы. Фокусный параметр Эллипса обозначен символом t .

Как рассчитать фокусный параметр эллипса с помощью этого онлайн калькулятора? Чтобы использовать этот онлайн-калькулятор для параметра Фокус эллипса, введите малую полуось эллипса (b) и линейный эксцентриситет эллипса 92)/Линейный эксцентриситет эллипса . Малая полуось эллипса — это половина длины наибольшей хорды, которая перпендикулярна линии, соединяющей фокусы эллипса, а линейный эксцентриситет эллипса — это расстояние от центра до любого из фокусов эллипса.

Как рассчитать фокусный параметр эллипса?

Параметр фокуса формулы эллипса определяется как кратчайшее расстояние между любым из фокусов и соответствующей директрисой гиперболы, вычисляемое с помощью 92)/Линейный эксцентриситет эллипса . Чтобы вычислить Фокусный параметр эллипса, вам нужна малая полуось эллипса (b) и линейный эксцентриситет эллипса (c) . С помощью нашего инструмента вам нужно ввести соответствующее значение для малой полуоси эллипса и линейного эксцентриситета эллипса и нажать кнопку расчета. Вы также можете выбрать единицы измерения (если есть) для ввода (ов) и вывода.

Доля

Скопировано!

93-8
9 Оценить квадратный корень из 12
10 Оценить квадратный корень из 20
11 Оценить квадратный корень из 50 94
18 Оценить квадратный корень из 45
19 Оценить квадратный корень из 32
20 Оценить квадратный корень из 18 92

Калькулятор эллипса — eMathHelp

Этот калькулятор найдет либо уравнение эллипса по заданным параметрам, либо центр, фокусы, вершины (большие вершины), ко-вершины (второстепенные вершины), (полу)длину большой оси, длина (полу) малой оси, площадь, окружность, латеральная прямая мышца, длина латеральной прямой кишки, фокальный параметр, фокусное расстояние (расстояние), эксцентриситет, линейный эксцентриситет, директрисы, пересечения по оси x, пересечения по оси y, домен и диапазон вошел в эллипс. Кроме того, он будет отображать эллипс. Шаги доступны.

Связанные калькуляторы: Калькулятор параболы, Калькулятор окружности, Калькулятор гиперболы, Калькулятор конического сечения

Тип:

из уравненияиз данных

Уравнение:

Если калькулятор что-то не рассчитал, или вы обнаружили ошибку, или у вас есть предложение/отзыв, пожалуйста, напишите его в комментариях ниже. 9{2}} = \sqrt{5}$$$.

Эксцентриситет равен $$$e = \frac{c}{a} = \frac{\sqrt{5}}{3}$$$.

Первый фокус $$$\left(h — c, k\right) = \left(- \sqrt{5}, 0\right)$$$.

Второй фокус: $$$\left(h + c, k\right) = \left(\sqrt{5}, 0\right)$$$.

Первая вершина $$$\left(h — a, k\right) = \left(-3, 0\right)$$$.

Вторая вершина $$$\left(h + a, k\right) = \left(3, 0\right)$$$.

Первая ковершина $$$\left(h, k — b\right) = \left(0, -2\right)$$$. 9{2}}{c} = \frac{9 \sqrt{5}}{5}$$$.

Х-пересечения можно найти, установив $$$y = 0$$$ в уравнении и решив $$$x$$$ (шаги см. в калькуляторе перехватов).

x-отрезки: $$$\left(-3, 0\right)$$$, $$$\left(3, 0\right)$$$

y-отрезки можно найти, установив $ $$x = 0$$$ в уравнении и решение для $$$y$$$: (шаги см. в калькуляторе перехватов).

y-отрезки: $$$\left(0, -2\right)$$$, $$$\left(0, 2\right)$$$

Домен $$$\left[h — а, ч + а\вправо] = \влево[-3, 3\вправо]$$$. 9{2}}{9}$$$А.

График: см. графический калькулятор.

Центр: $$$\влево(0, 0\вправо)$$$A.

Первый фокус: $$$\влево(-\sqrt{5}, 0\вправо)\приблизительно \влево(-2,23606797749979, 0\вправо)$$$A.

Второй фокус: $$$\left(\sqrt{5}, 0\right)\приблизительно \left(2. 23606797749979, 0\right)$$$A.

Первая вершина: $$$\left(-3, 0\right)$$$A.

Вторая вершина: $$$\left(3, 0\right)$$$A.

Первая ковершина: $$$\left(0, -2\right)$$$A.

Вторая ковершина: $$$\left(0, 2\right)$$$A.

Длина главной оси: $$$6$$$A.

Длина большой полуоси: $$$3$$$A.

Длина малой оси: $$$4$$$A.

Длина малой полуоси: $$$2$$$A.

Площадь: $$$6 \pi\ок. 18,849555921538759$$$A.

Окружность: $$$12 E\left(\frac{5}{9}\справа)\приблизительно 15,86543958929059$$$A.

Первая широкая прямая кишка: $$$x = — \sqrt{5}\приблизительно -2,23606797749979$$$A.

Вторая широкая прямая кишка: $$$x = \sqrt{5}\приблизительно 2,23606797749979$$$A.

Концы первой широкой прямой кишки: $$$\left(- \sqrt{5}, — \frac{4}{3}\right)\приблизительно \left(-2. 23606797749979, -1.3333333333333333\right)$ $$, $$$\left(-\sqrt{5}, \frac{4}{3}\right)\приблизительно \left(-2,23606797749979, 1,333333333333333\right)$$$A.

Концы второй широкой прямой кишки: $$$\left(\sqrt{5}, — \frac{4}{3}\right)\приблизительно \left(2.23606797749979, -1.3333333333333333\right)$$$, $$$\left(\sqrt{5}, \frac{4}{3}\right)\приблизительно \left(2.23606797749979, 1.3333333333333333\right)$$$A.

Длина латерального отдела прямой кишки: $$$\frac{8}{3}\примерно 2,666666666666667$$$A.

Параметр фокуса: $$$\frac{4 \sqrt{5}}{5}\приблизительно 1,788854381999832$$$A.

Эксцентриситет: $$$\frac{\sqrt{5}}{3}\приблизительно 0,74535599249993$$$А.

Линейный эксцентриситет: $$$\sqrt{5}\приблизительно 2,23606797749979$$$A.

Первая направляющая: $$$x = — \frac{9 \sqrt{5}}{5}\приблизительно -4,024922359499621$$$A.

Вторая направляющая: $$$x = \frac{9 \sqrt{5}}{5}\приблизительно 4,024922359499621$$$A.

Фокальный параметр это: Фокальный параметр | это… Что такое Фокальный параметр?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх