Размер матрицы это: Размер матрицы. Что это такое?

Содержание

Матрица (светочувствительная матрица) в камерах видеонаблюдения

Матрица или светочувствительная матрица, видеоматрица (image sensor, imager) является основным элементов видеокамер, цифровых фотоаппаратов и предназначена для преобразования, проецированного на неё оптического изображения в аналоговый электрический сигнал или в поток цифровых данных (при наличии аналого-цифрового преобразователя непосредственно в составе матрицы). Если обойтись без википедии, то матрица преобразовывает свет в электрический сигнал.


Необходимо отметить, что сама матрица даже важнее процессора, который используется для оцифровки видео — пусть в ЦП и будет множество функций, но если на матрице получено плохое изображение, то процессор работает уже с плохим изображением.
Также отметим, что у одного производителя может быть две камеры с одинаковыми характеристиками (разрешение записи, угол обзора и т.п.), но разными матрицами, например одна камера с матрицей от Sony и вторая камера с матрицей от SOI (или Noname) — и цена таких камер может отличаться на 30-35%.


Производители матриц


Давайте и начнем с производителей. Наиболее известными и популярными производителями матриц для камер видеонаблюдения являются: ON Semiconductor Corporation, Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Производители используют матрицы этих брендов для создания основной линейки видеокамер и камер премиум класса. Также, отметим бренды Canon, Hikvision и Dahua — они также производят матрицы под собственные нужды.

Но, разумеется, что существует множество других производителей, которые предлагают бюджетные решения, например, одна из наиболее популярных компаний — это SOI (Silicon Optronics, Inc.), которая достаточно молодая, но уже пытается найти свою нишу среди именитых брендов. Как раз на базе матриц SOI множество производителей и делают бюджетные линейки видеокамер. То есть, если Вы видите, что даже у одного производителя есть камеры с абсолютно одинаковыми характеристиками, но с разной ценой — то, обратите внимание на матрицу и производителя этой матрицы, скорее всего разница только в этом. В целом, понятна и разница между брендами и любым ноунеймом. Да, все характеристики могут быть одинаковыми, разрешение передачи видео изображения, но разные матрицы и разные производители — на выходе вы увидите разные картинки, разную насыщенность и даже разные цвета (оттенки).


CCD и CMOS матрицы


В старых статьях и обзорах в Сети вы можете увидеть много букв про преимущества и недостатки CCD или CMOS матриц и какую лучше выбрать. Но, победили CMOS матрицы, в основном из-за того, что они дешевле в производстве. Поэтому, при выборе камеры для видеонаблюдения нет больше выбора между CCD и CMOS матрицы — only CMOS. Поэтому, перейдем к остальным характеристикам матриц.

Формат (типоразмер) матрицы


В характеристиках видеокамеры вы обязательно увидите размер матрицы — 1/4 дюйма, 1/3″, 1/2.8 д и т.п. Формат матрицы — это размер матрицы по диагонали. Обозначение типоразмера досталось в наследство от электронно-лучевых трубок, и указывают формат матрицы в виде дроби с размерностью в дюймах.


В формате матрицы очень простое правило — чем больше размер матрицы, тем лучше. Так как, при других равных условиях (разрешении, то есть одинаковом количестве пикселей) у большей матрицы крупнее пиксели, таким образом, она улавливает больше света. Кроме того, сами пиксели на матрице большего размера расположены менее тесно, что обеспечивает меньшее влияние взаимных помех и ниже уровень паразитных шумов, а это все влияет качество получаемого видеосигнала и получаемого изображения в итоге.

Также, физический размер матрицы влияет на угол обзора камера видеонаблюдения. При прочих равных условиях, чем больше матрица, тем больше углы обзора у видеокамеры.
От размера матрицы зависит и то, какие объективы можно устанавливать на камеру (если возможна смена объектива в камере видеонаблюдения).  Производители объективов всегда указывают размер матрицы, под которую подходит объектив, например 1/4 или 1/3. При этом, объектив для матрицы большего размера подойдет для камер с матрицей меньшего размера, но никак не наоборот.

И, что очевидно, матрица большего размера дороже в производстве. Поэтому, в бюджетных моделях камер видеонаблюдения вы редко увидите матрицы больше 1/4″, а в уже более дорогих камерах используются типоразмеры матрицы 1/3″,  1/2.8″ и т.п. В специальных профессиональных камерах высокого качества могут использоваться матрицы размером 1/2″ и 1/1.9″.


Светочувствительность матрицы

Характеристика, которую вы также увидите в описание практически у каждого производителя, некоторые производители могут указывать просто как чувствительность матрицы. Светочувствительность матрицы определяет возможность работы матрицы в условиях окружающего освещения. Таким образом, чем меньше количество световой энергии необходимо для получения нормального изображения, тем выше и светочувствительность матрицы. Для всех матриц справедливо следующее — чем лучше освещенность, тем лучше изображение. Светочувствительность матрицы производители указывают в Люксах — ЛК, Lux, люкс. Но, обратите внимание, что производители указывают минимальный уровень освещенности, при котором видеокамера еще может зафиксировать какое-то изображение, но никто не обещает, что это будет изображение хорошего качества. Сегодня практически все камеры поддерживают режимы «день / ночь» и оснащены ИК-подсветкой и в темное время суток (при снижении освещенности) камера переключается автоматически в черно-белый режим съемки. Обычная ИК-подсветка позволяет снимать даже в полной темноте на расстоянии 20 – 25 м, кроме того, существуют модели с усиленной ИК-подсветкой, где можно снимать на расстоянии 60 – 100 м в полной темноте.



Таким образом, светочувствительность критична для камер, без ИК-подсветки, которых сейчас практически нет (только специальные миниатюрные цилиндрические или корпусные камеры могут быть без ИК-подсветки). Как правило, все производители указывают светочувствительность 0,01 Lux, что соответствует по значениям освещенности как «Безлунная ночь» 0,01 Lux (для сравнения — «Лунная ночь» — 0,05 Lux, «Сумерки и хорошо освещенная автомагистраль ночью» — 10 Lux, «Дневное, естественное освещение на улице в солнечную погоду» — 5000 — 100000 Lux).


Еще стоит немного упомянуть о технологиях, которые используются для улучшения светочувствительности матрицы в видеокамере и снизить потери света в процессе фиксации изображения. Как правило, для этого необходимо вывести светочувствительный элемент как можно ближе к микролинзе матрицы, которая собирает свет. Это технологии Exmor и Starlight. Такие камеры могут передавать даже в цвете с помещения освещенностью 0,01 Lux, и давать неплохое изображение в условиях освещенности 0,0001 — 0,001 Lux. Но стоит, отметить, что и цена таких камер немалая – это уже более профессиональная линейка. Есть смысл использовать такие технологии в роботизированных камерах, которые снимают, например, на больших территориях или для системы «Умный город». Для обычных объектов проще / и дешевле 🙂 / заняться вопросом освещения.

Надеемся, что после прочтения этой статьи вы больше узнаете о характеристиках матрицы и на что они влияют. Теперь вы понимаете насколько много зависит от производителя и качестве матрицы в видеокамере. Поэтому, в одном и том же производители в одинаковых характеристиках и корпусах могут быть камеры с разными матрицами и по разной цене (разница может составлять даже 30-35%).

Основы высшей математики — Матрицы — Высшая математика — Теория, тесты, формулы и задачи

Оглавление:

  • Основные теоретические сведения
    • Матрицы
    • Обратная матрица
  • Матрицы. Вся теория и задачи с решениями или ответами

 

Основные теоретические сведения

Матрицы

К оглавлению…

Матрицей называют прямоугольную таблицу, заполненную числами. Важнейшие характеристики матрицы – число строк и число столбцов. Если у матрицы одинаковое число строк и столбцов, ее называют квадратной. Обозначают матрицы большими латинскими буквами.

Сами числа называют элементами матрицы и характеризуют их положением в матрице, задавая номер строки и номер столбца и записывая их в виде двойного индекса, причем вначале записывают номер строки, а затем столбца. Например, a14 есть элемент матрицы, стоящий в первой строке и четвертом столбце, a32 стоит в третьей строке и втором столбце.

Главной диагональю квадратной матрицы называют элементы, имеющие одинаковые индексы, то есть те элементы, у которых номер строки совпадает с номером столбца. Побочная диагональ идет «перпендикулярно» главной диагонали.

Особую важность представляют собой так называемые единичные матрицы. Это квадратные матрицы, у которых на главной диагонали стоят 1, а все остальные числа равны 0. Обозначают единичные матрицы E. Матрицы называют равными, если у них равны число строк, число столбцов, и все элементы, имеющие одинаковые индексы, равны. Матрица называется нулевой, если все ее элементы равны 0. Обозначается нулевая матрица О.

Простейшие действия с матрицами

1. Умножение матрицы на число. Для этого необходимо умножить каждый элемент матрицы на данное число.

2. Сложение матриц. Складывать можно только матрицы одинакового размера, то есть имеющие одинаковое число строк и одинаковое число столбцов. При сложении матриц соответствующие их элементы складываются.

3. Транспонирование матрицы. При транспонировании у матрицы строки становятся столбцами и наоборот. Полученная матрица называется транспонированной и обозначается AT. Для транспонирования матриц справедливы следующие свойства:

4. Умножение матриц. Для произведения матриц существуют следующие свойства:

  • Умножать можно матрицы, если число столбцов первой матрицы равно числу строк второй матрицы.
  • В результате получится матрица, число строк которой равно числу строк первой матрицы, а число столбцов равно числу столбцов второй матрицы.
  • Умножение матриц некоммутативно. Это значит, что от перестановки местами матриц в произведении результат меняется. Более того, если можно посчитать произведение A∙B, это совсем не означает, что можно посчитать произведение B∙A.
  • Пусть C = A∙B. Для определения элемента матрицы С, стоящего в i-той строке и k-том столбце необходимо взять i-тую строку первой умножаемой матрицы и k-тый столбец второй. Далее поочередно брать элементы этих строки и столбца и умножать их. Берем первый элемент из строки первой матрицы и умножаем на первый элемент столбца второй матрицы. Далее берем второй элемент строки первой матрицы и умножаем на второй элемент столбца второй матрицы и так далее. А потом все эти произведения надо сложить.

Свойства произведения матриц:

Определитель матрицы

Определителем (детерминантом) квадратной матрицы А называется число, которое обозначается detA, реже |A| или просто Δ, и вычисляется определённым образом. Для матрицы размера 1х1 определителем является сам единственный элемент матрицы. Для матрицы размера 2х2 определитель находят по следующей формуле:

Миноры и алгебраические дополнения

Рассмотрим матрицу А. Выберем в ней s строк и s столбцов. Составим квадратную матрицу из элементов, стоящих на пересечении полученных строк и столбцов. Минором матрицы А порядка s называют определитель полученной матрицы.

Рассмотрим квадратную матрицу А. Выберем в ней s строк и s столбцов. Дополнительным минором к минору порядка s называют определитель, составленный из элементов, оставшихся после вычеркивания данных строк и столбцов.

Алгебраическим дополнением к элементу aik квадратной матрицы А называют дополнительный минор к этому элементу, умноженный на (–1)i+k, где i+k есть сумма номеров строки и столбца элемента aik. Обозначают алгебраическое дополнение Aik.

Вычисление определителя матрицы через алгебраические дополнения

Рассмотрим квадратную матрицу А. Для вычисления ее определителя необходимо выбрать любую ее строку или столбец и найти произведения каждого элемента этой строки или столбца на алгебраическое дополнение к нему. А дальше надо просуммировать все эти произведения.

Когда будете считать алгебраические дополнения, не забывайте про множитель (–1)i+k. Чтобы счет был более простым, выбирайте ту строку или столбец матрицы, который содержит наибольшее число нулей.

Расчет алгебраического дополнения может сводиться к расчету определителя размером более чем 2х2. В этом случае такой расчет также нужно проводить через алгебраические дополнения, и так далее до тех пор, пока алгебраические дополнения, которые нужно будет считать, не станут размером 2х2, после чего воспользоваться формулой выше.

 

Обратная матрица

К оглавлению…

Рассмотрим квадратную матрицу А. Матрица A–1 называется обратной к матрице А, если их произведения равны единичной матрице. Обратная матрица существует только для квадратных матриц. Обратная матрица существует, только если матрица А невырождена, то есть ее определитель не равен нулю. В противном случае обратную матрицу посчитать невозможно. Для построения обратной матрицы необходимо:

  1. Найти определитель матрицы.
  2. Найти алгебраическое дополнение для каждого элемента матрицы.
  3. Построить матрицу из алгебраических дополнений и обязательно транспонировать ее. Часто про транспонирование забывают.
  4. Разделить полученную матрицу на определитель исходной матрицы.

Таким образом, в случае, если матрица А имеет размер 3х3, обратная к ней матрица имеет вид:

 

Матрицы. Вся теория и задачи с решениями или ответами

К оглавлению…

Цифровое рентгеновское изображение [Dels, размер матрицы, битовая глубина, динамический диапазон, частота дискретизации] • Как работает радиология

Основные понятия цифровых рентгеновских детекторов охватываются, включая важные понятия. Цифровые детекторы разделены на небольшие отдельные компоненты, называемые элементами детектора (DEL), а размер отдельных DEL называется шагом пикселя. Принимая во внимание, что размер матрицы — это количество DEL в каждом направлении на детекторе. Диапазон сигнала, в котором детектор может точно отображать измеренное рентгеновское излучение, называется динамическим диапазоном. Разрядность — это количество отдельных компьютерных битов, используемых при сохранении значения для каждого DEL.

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

  1. Терминология выборки цифровых излучений
  2. Элементы детектора
  3. Размер
  4. Частота выборки
  5. Пример расчеты
  6. Цифровой выборки концепции
    • .

Здесь мы обсудим терминологию, относящуюся к размеру каждого элемента детектора, чтобы, когда такие определения, как шаг детектора или доля заполнения, попадались вокруг, вы хорошо понимали их значение.

Детекторные элементы

Как и цифровая фотография, рентгеновские изображения формируются с помощью цифровых элементов (DEL). Когда изображение сохраняется после его получения или когда оно отображается на мониторе, отдельные элементы называются элементами изображения (пикселями).

Просто для ясности мы используем другую терминологию для описания физических элементов детектора (DEL).

Затем шаг детектора определяется как расстояние от конца до конца в пределах DEL. Следовательно, меньший размер DEL даст меньший шаг.

Кроме того, в каждом DEL есть область, которая может обнаруживать рентгеновские лучи, и неактивная область (например, электроника каждого DEL). Область, в которой могут взаимодействовать рентгеновские лучи, называется активной областью. Область, которая не может обнаружить рентгеновские лучи, называется неактивной областью.

Отношение активной площади ДЭС к общему размеру каждого ДЭС называется «фракцией заполнения».

Таким образом, доля заполнения детектора будет представлять собой число от 0 до 1. Чем больше доля заполнения, тем больше рентгеновских лучей будет захвачено при измерениях. Таким образом, более высокая фракция заполнения будет более эффективной по дозе. В общем, по мере того, как размер каждого DEL становится меньше, задача состоит в том, чтобы гарантировать, что фракция заполнения остается высокой, поскольку для каждого DEL имеется связанная электроника.

Rad Take-Home Point : Цифровой рентгеновский детектор можно разделить на детекторные элементы (DEL), и каждый элемент имеет долю заполнения, которая указывает геометрическую эффективность детектора для сбора рентгеновского сигнала.

Размер матрицы

Матрица детектора состоит из множества отдельных DEL. Размер матрицы представляет собой двумерное число. Если размер матрицы 1024 x 1024, это означает, что матрица имеет более одного миллиона DEL.

Существуют также медицинские плоскопанельные детекторы с матрицей 4288×4288.

Мы можем поместить эти числа в контекст, который мы можем сравнить с цифровыми камерами, где размер матрицы обычно указывается в мегапикселях. Детектор 1024×1024 равен 1 мегапикселю. Мегапиксель определяется как 2 20  , что немного превышает 1 миллион. Детектор с разрешением 4288×4288 эквивалентен датчику с разрешением 17,5 мегапикселей с точки зрения количества Del.

Rad Take-home Point : Размер матрицы цифрового рентгеновского детектора указывает количество элементов во всем детекторе.

Частота дискретизации

Еще одной важной характеристикой цифрового плоскопанельного детектора является частота дискретизации в детекторе. Это еще один способ выразить размер каждого Del.

Частота дискретизации обратно пропорциональна шагу пикселя.

Если DEL больше (т.е. имеют больший шаг), то частота дискретизации будет меньше. Чем меньше DEL, тем выше частота дискретизации.

Рад Возьми домой Пункт : Частота дискретизации обратно пропорциональна высоте тона каждого элемента Del.

Пример расчета

Давайте рассмотрим пример, чтобы понять, как рассчитываются эти параметры.

Если представить, что размер нашего детектора 50см х 50см и размер матрицы 1000 х 1000. Значит размер пикселя по формуле будет:

Итак, частота дискретизации будет рассчитываться так:

Мы также может рассчитать коэффициент заполнения для примера случая. Если размер DEL составляет 1 мм x 1 мм, а размер активной области составляет 0,5 мм x 0,5 мм, какой будет активная область?

Этот детектор считается детектором с низкой долей заполнения, поскольку только четверть площади детектора активна и регистрирует рентгеновские лучи.

Rad. Пункт . Как и в случае с цифровой фотографией, существует несколько основных параметров, которые характеризуют цифровой детектор рентгеновского излучения на высоком уровне.

Обзор

Большинство рентгеновских систем в США используют цифровые рентгеновские детекторы (плоские детекторы с непрямым или прямым преобразованием) или так называемую компьютерную рентгенографию, в которой также используется цифровое считывание.

Поскольку вы являетесь радиологическим технологом или студентом и используете или скоро будете использовать эти системы много раз в день, вас, вероятно, интересуют важные концепции формирования цифрового изображения.

Физика различных типов детекторов будет рассмотрена в другом посте, но здесь мы сосредоточимся на общих чертах всех цифровых рентгеновских систем.

R a d Точка возврата : Рентгеновские лучи взаимодействуют с детектором, создавая аналоговый сигнал, который затем преобразуется в цифровой сигнал (номер для каждого элемента детектора) в детекторе.

Битовая глубина

Мы начнем с примера наиболее распространенного рентгеновского детектора, используемого в клинической практике. В детекторе непрямого рентгеновского излучения, когда рентгеновские лучи попадают на детектор, они преобразуются в фотоны видимого света. Эти световые фотоны измеряются фотодиодом, который преобразует их в электроны.

В этом случае количество электронов является аналоговым сигналом и оцифровывается по мере прохождения электронов по цепям, и каждому элементу детектора присваивается одно число.

Цифровая схема преобразует энергию, выделенную детектором, в дискретное (т. е. оцифрованное) число. На рисунке видно влияние количества бинов на оцифровку. Слева истинная энергия. Справа представлены оцифрованные версии сигнала с разной разрядностью.

При оцифровке сигнала каждый бит будет установлен либо в 0, либо в 1. Он устанавливается в 1, если истинный сигнал выше уровня, и в 0, если истинный сигнал ниже уровня.

Количество уровней при оцифровке напрямую связано с тем, сколько разрядов имеет детектор в схеме аналого-цифрового преобразования: количество уровней = 2 N , где N — разрядность.

Таким образом, если мы используем 4-битное преобразование энергии в цифровой сигнал, точность будет намного меньше, чем в случае 8- или 16-битного преобразования. В целом, чем больше у вас уровней (т. е. чем выше битовая глубина), тем более точным будет изображение.

Rad Take-Home Point : Во всех цифровых детекторах рентгеновского излучения аналоговый сигнал преобразуется в цифровой сигнал, и преобразование становится более точным при использовании большей разрядности.

Динамический диапазон

Динамический диапазон также является частью процесса оцифровки и связан с битовой глубиной. Динамический диапазон — это диапазон, в котором сигнал будет должным образом оцифрован. Например, для сигналов, которые выше верхней границы динамического диапазона, считываемый сигнал будет насыщенным, поскольку он не может обрабатывать высокие уровни сигнала.

Как обсуждалось в разделе выше, желательно уменьшить размер каждого бина оцифровки. Это может быть достигнуто путем добавления большего количества бинов, как обсуждалось выше. Длина каждого бина также может быть уменьшена за счет уменьшения поддерживаемого диапазона. Этот диапазон поддерживаемых уровней сигнала называется динамическим диапазоном системы. Высота каждого бина оцифровки определяется просто: Высота цифрового бина = Динамический диапазон / (Количество бинов -1).

На этом рисунке показаны проблемы, которые могут возникнуть, и почему необходимо тщательно выбирать динамический диапазон и битовую глубину. На рисунке динамический диапазон изменен, а битовая глубина остается неизменной.

Если динамический диапазон системы слишком мал, то сигналы с очень высоким уровнем сигнала будут насыщены, и истинное значение не будет записано, а будет использоваться только самое высокое значение, которое система может записать.

С другой стороны, если динамический диапазон слишком велик, при преобразовании будут потеряны биты, которые никогда не используются, и каждый бит будет покрывать больший диапазон сигнала. Поскольку желательно, чтобы каждый бит покрывал меньший диапазон сигнала, слишком большой динамический диапазон также не является оптимальным.

В оптимальном случае динамический диапазон системы будет охватывать почти все уровни сигнала, которые ожидаются в системе, так что не произойдет насыщения, но он не будет настолько большим, чтобы возникали значительные ошибки оцифровки. Когда динамический диапазон выбран правильно, это «хорошо выбранная» область на рисунке.

На клинических изображениях, если детектор не имеет достаточно большого динамического диапазона, значения в областях с очень высоким уровнем сигнала, таких как легкие, будут насыщены, а структурные различия в легочной ткани будут потеряны.

Rad Возвратная точка : Диапазон всех значений, которые должным образом оцифрованы, известен как динамический диапазон детектора, и динамический диапазон должен быть выбран соответствующим образом, чтобы уменьшить размер каждого интервала выборки, но без насыщения.

Увеличение размера матрицы

Пользователям необходимо увеличить размер матрицы по целому ряду причин, но наиболее распространенной из них является то, что нужный им размер матрицы недоступен в виде отдельного устройства/модуля. Это особенно верно для PXI, где модульная конструкция накладывает ограничения на размер реализуемой матрицы.

Если есть возможность, выберите комплексное решение

Несмотря на то, что многие устройства/модули могут быть расширены, пользователи должны помнить, что это не очень экономичный вариант, если только возможность расширения не предназначена для упрощения расширения.

В случае LXI механическая свобода позволяет реализовать гораздо более крупные матрицы с меньшими затратами, а дальнейшее расширение устройства LXI можно выполнить, просто добавив кабельную сборку для соединения двух устройств. Примером этого является матрица LXI модели 60-552, простое добавление 78-контактного кабеля типа D позволяет использовать уже большую матрицу (в данном примере до 64×64).

В случае PXI пользователям следует рассмотреть возможность использования многослотового модуля BRIC для реализации матриц большего размера.

Выбор интегрированного матричного решения вместо использования небольших устройств, соединенных вместе, обеспечивает множество преимуществ для пользователя:

  • Экономит трудозатраты и затраты на электромонтаж для соединения клеммных блоков вместе, экономит затраты на рабочую силу и приобретение соединительных принадлежностей
  • Более надежный
  • Не требуется дополнительных испытаний для проверки правильности настройки системы коммутации
  • Матрица может быть запрограммирована просто как матрица, а не как набор отдельных частей, что делает разработку тестовой программы более быстрой, простой для понимания и менее зависимой от обширных инструментов разработки.
  • Улучшенная характеристика матрицы из-за более коротких расстояний соединения
  • Упрощенная диагностика отказа в случае отказа системы коммутации
  • Возможность диагностики отказа с помощью одного тестового инструмента, такого как BIRST

Понимание вопросов производительности расширения

Однако в некоторых случаях у пользователя нет другого выбора, кроме как расширить систему коммутации путем добавления других устройств или модулей. Пользователи должны знать о проблемах, связанных с расширением матрицы:

  • Прямое соединение . В этом случае пользователь напрямую расширяет матрицу, добавляя прямой кабель для соединения оси Y или X (или даже обеих) матрицы. Это самый простой для понимания метод расширения, и один пример показан в техпаспорте 60-552. Если требуется только расширение X, соединения шины Y двух устройств связаны вместе, поэтому система имеет одну ось Y и два набора X. доступная ось (один набор в каждом устройстве). Однако этот метод расширения влияет на полосу пропускания, поскольку к оси Y теперь подключено в два раза больше реле, а также длина кабеля, соединяющего два устройства. В результате полоса пропускания матрицы будет уменьшена, но функциональность предоставлена ​​одной матрице. Некоторые типы матриц BRIC (с широкой аналоговой шиной) используют эту методологию.

Расширение матрицы в обоих направлениях X и Y с использованием прямого соединения, в данном случае с использованием

, например, 60-552, который имеет специальные разъемы для расширения 901736
  • Сквозное соединение . В этом случае (при условии, что ось X должна быть расширена) ось Y снова связана, но предусмотрено реле, которое направляет сигнал Y либо на матрицу внутри устройства, либо на вторую матрицу. Нагрузка на ось Y значительно снижается, так как если выбрана внутренняя матрица, то соединение осуществляется непосредственно с внутренней матрицей, если выбрана вторая матрица, то соединение проходит через соединительный кабель ко второй матрице. Ухудшения полосы пропускания можно избежать, но сквозное реле увеличивает стоимость и пространство для сказок. Некоторая функциональность в матрице также теряется, поскольку уже не так просто соединить X или одну матрицу с X второй матрицы. Матрицы RF используют эту систему, потому что они в первую очередь предназначены для использования в качестве матриц соединения Y-X, и все усилия должны быть предприняты для сохранения матрицы BW.

Example of a Loop Thru connection on a 2×2 RF matrix (40-837)

  • Isolation Relay. В этом случае матрицы включают реле изоляции, которые отключают матрицу, когда подключение не требуется. Так как соединительный кабель между двумя дорожками не отсоединен, происходит некоторое ухудшение полосы пропускания, но гораздо меньшее, чем в примере с прямым соединением. Функциональность матрицы полностью сохранена. Этот метод соединения используется в BRIC с 8-канальными и меньшими аналоговыми объединительными панелями, а также в продуктах LXI, таких как 60-554.


U Sing Изолирующие реле для расширения матрицы, оставляя соединительную шину на месте.
Этот метод используется как в матрицах LXI, так и в PXI для промежуточных BW.

Простота расширения

Проще всего расширять матрицы, в которых расширение осуществляется с помощью соединителя, отдельного от соединения проверяемого оборудования (X или Y), поскольку расширением можно легко управлять, не затрагивая соединения, которые в первую очередь интересуют пользователя. Это гораздо проще реализовать в продуктах LXI, чем в продуктах PXI, из-за проблем с пространством на передней панели, создаваемых стандартом PXI. В некоторых продуктах LXI используются эти специальные разъемы, поскольку они позволяют использовать стандартные полочные кабельные аксессуары.

Размер матрицы это: Размер матрицы. Что это такое?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх