Размеры матрицы цифрового фотоаппарата: типы, размер, разрешение, светочувствительность, уход

таблица. Физический размер матрицы фотоаппарата

Практически каждый современный человек сталкивался с непростой ситуацией по выбору цифрового фотоаппарата. Как его выбрать, чтобы получить качественные снимки? От чего зависит физическое качество снимка? Попытаемся, не углубляясь в тонкости, ответить на эти вопросы. Художественную ценность фотографии в данной статье рассматривать не будем.

Определяющие характеристики цифровой камеры – это количество мегапикселов и размер матрицы фотоаппарата

Что такое пиксел и матрицы? Матрица (синоним – сенсор) – это прямоугольный плоский элемент, заменивший фотоплёнку в старой фотокамере и преобразующий в электрические сигналы изображение, которое попало в неё через объектив. Эту информацию процессор аппарата после оцифровки записывает на карту памяти в виде файла. На матрице расположены пикселы — базовые элементы или точки (микроскопические фотоэлементы-транзисторы), из которых формируется цифровое изображение. Мегапиксел – миллион пикселов. Большинство покупателей ориентируются именно на этот параметр. Производителю цифрового аппарата намного дешевле установить в своё устройство новую матрицу с увеличенным количеством мегапикселов и запустить его в производство, нежели переработать практически всё устройство камеры и обеспечить его большой матрицей. Поэтому в магазине продавец заостряет внимание покупателя именно на параметре, отражающем число мегапикселов, и скромно замалчивает размер матрицы фотоаппарата.

Какие размеры матриц в фотоаппаратах различной стоимости?

Чем больше размеры пиксела и (как следствие) матрицы, тем качественнее снимок. Большой размер пиксела лучше воспринимает свет и точнее определяет цвет. Чем меньше размеры пиксела и матрицы, тем больше помех (шумов) на снимке. Поэтому много мегапикселов вовсе не означает, что качество снимка будет отличное. Размер матрицы – вот определяющий качество снимка и стоимость аппарата параметр. На нижеследующем снимке видна матрица зеркальной камеры. Очистка её производится с помощью специальной программы, которая установлена в фотоаппарате. Прикасаться к матрице руками и любыми предметами абсолютно недопустимо. Это прямой путь к выходу её из строя.

Какие размеры матриц фотоаппаратов бывают, в каких камерах они установлены?

Ответ на этот вопрос ниже.

Размеры матриц фотоаппаратов: таблица

Формат

или дюймы

диагонали

Физический размер, мм

Пример устройства
FF (FullFrame), полный кадр36 × 24Дорогие профессиональные фотокамеры. Canon, Nikon, Sony, Leica
APS-C23,5 × 15,6Зеркалки широкого ценового диапазона Nikon, Canon, Sony
APS-C22,3 × 14,9Зеркалки широкого ценового диапазона Canon, Sony, продвинутые беззеркалки
4/3″ или Micro 4/317,3 × 13,0Беззеркалки широкого ценового диапазона Panasonic, Olympus
1″12,8 × 9,6Беззеркалки Nikon, Samsung и продвинутые компактные фотоаппараты
1/2,3″6,16 × 4,62Подавляющее большинство мыльниц
1/3″4,69 × 3,52Фотокамеры смартфонов

Рекомендации по выбору фотокамеры

Если вы выбираете из нескольких устройств фотоаппарат по количеству мегапикселов, то окончательный вывод разумно делать после того, как выясните, матрицы какого размера в них установлены. Выбор стоит сделать в пользу той фотокамеры, в которой установлена матрица самого большого размера.

Если вы хотите снимать на камеру с большой матрицей, придётся мириться с её большими размерами и весом. Проанализировав рынок фотоаппаратов, становится понятно, что не существует пока небольших и дешёвых полнокадровых камер. А массовая мобильная фототехника сильно ограничена небольшим размером матрицы.

Если вы не предполагаете заниматься фотографией профессионально, то и не стоит тратиться на дорогой фотоаппарат с большим сенсором. Обычные цифровые дешёвые фотоаппараты (современные мыльницы) справятся с этой задачей ненамного хуже навороченных зеркалок и порадуют вас приличными снимками.

Не стоит забывать, что камеры в современных смартфонах также имеют неплохие параметры, которых вполне достаточно для оперативного создания хорошего снимка.

В заключение заметим, что на получение качественного снимка влияет много факторов. Самый важный из них – профессионализм фотографа. И расхожее мнение о том, что крутая камера – залог прекрасных снимков, так же далеко от истины, как и то, что дорогая кисть у художника – гарантия создания шедевров. Фотоаппаратура – всего лишь инструмент. Фотографирует человек, а не камера. Тем не менее в арсеналах у знаменитых фотохудожников трудно найти дешёвую мыльницу. Выбор за вами.

Взгляд изнутри: матрицы цифровых камер

Предисловие

Первым в «коллекцию» светочувствительных матриц попали фронтальная и задняя камеры смартфона одного известного корейского производителя, который был любезно предоставлен Василием Столяровым. Затем мне прислали старенький неработающий фотоаппарат фирмы Pentax (здесь и далее я намеренно не буду указывать точную модель девайсов). Девайс был мёртв и это был хороший повод сдать его в мои заботливые руки, а не выкидывать, как многие делают.

И как только я собрался пилить, поступило ещё одно предложение от моего практически однокурсника, Ильи. От этого предложение я не мог отказаться. Мне презентовали относительно современный Canon, у которого были проблемы со съёмкой изображений.

Таким образом, на красно-революционно-первомайский стол ложатся три кандидата: OEM камера из телефона и фотоаппараты Pentax (самый пожилой среди всех участников) и Canon (пожалуй, самый молодой).

Если ещё кто-то не знает, зачем мы здесь собрались, то в подвале данной статьи есть ссылки на предыдущие «вскрытия». Если же кто-то запамятовал, как работает цифровой фотоаппарат или зачем нужна матрица, то милости просим на Wiki или просто посмотрите это видео от канала Discovery:

Часть теоретическая. CCD и CMOS

На сегодняшний день матрицы, выполненные по технологии CMOS (Complementary Metal-Oxide Semiconductor) завоевали более 90% мирового рынка, а не так давно безумно популярным CCD (Charge-Coupled Device) уже пророчат скорый закат.

Причин тому масса, вот далеко не полный список преимуществ CMOS-технологии: во-первых, низкое энергопотребление в статическом состоянии по сравнению с CCD, во-вторых, CMOS сразу «выдаёт» цифровой сигнал, который не требует дополнительного преобразования (точнее преобразование происходит на каждом отдельном субпикселе), в отличие от CCD, которое является фактически аналоговым устройством, в-третьих, дешевизна производства, особенно при больших размерах матриц.

Кратко ознакомиться с принципами работы CMOS-матриц можно с помощью в двух видео от компании Canon:

Но все наши пациенты (может быть, за исключением матрицы камеры мобильного телефона) относятся к той эпохе, когда миром безраздельно правил CCD, а CMOS только набирался сил и светочувствительности, чтобы впоследствии занять лидирующие позиции. Поэтому несколько слов, всё же, скажу о том, как работает CCD-матрица. Более подробное описание всегда можно найти на страницах Wiki.

Итак, фотон от объекта съёмки, пройдя сквозь фильтр Байера, то есть цветофильтр типа RGBG, или фильтр RGBW и собирающую микролинзу, попадает на светочувствительный полупроводниковый материал. Поглощаясь, фотон порождает электро-дырочную пару, которая в ячейке под действием внешнего электрического поля «разделяется», и электрон «отправляется» в копилку – потенциальную яму, где он будет ожидать «чтения».

Схема устройства CCD матрицы

Чтение же в CCD матрицы происходит «поячеечно», если так можно выразиться. Пусть мы имеем массив 5 на 5 пикселей. Сначала мы считываем количество электронов, а по-простому величину электрического тока, с первого пикселя. Затем специальный контроллер «сдвигает» все ячейки на одну, то есть заряд из второй ячейки перетекает в первую. Опять считывается значение и так, пока не будут прочитаны все 5 ячеек. Далее уже другой контроллер сдвигает оставшееся «изображение» на одну строчку вниз и процесс повторяется, пока не будут измерены токи во всех 25 ячейках. Может показаться, что это долгий процесс, однако для 5 миллионов пикселей он занимает считанные доли секунд.

Процесс считывания изображения с CCD матрицы

Чтобы было совсем понятно, предлагаю ознакомиться со следующими видео:

Часть практическая

Обычно красивыми разборами занимаются люди в белоснежных перчатках, недавно они добрались и до фотоаппаратов, однако поговаривают, что за видео-инструкцию по сборке необходимо доплатить, отправив смс на короткий номер. Далее будут применяться чуть более чем полностью топорные методы, так что не советую повторять это в домашних условиях…

Как разбирался сотовый телефон всегда можно посмотреть на страницах предыдущей статьи, поэтому не буду здесь приводить эти душераздирающие кадры ещё раз.

Вышеупомянутый фотоаппарат Pentax был предоставлен мисьё DarkWood, у которого, как мне кажется, сейчас сердце должно обливаться кровью, а по щеке катиться скупая мужская слеза:

Из всего многообразия деталей, нас пока интересует лишь LCD дисплей, который будет демонстрироваться школьникам, приходящим к нам, на ФНМ, на экскурсии, сама CCD матрица, стекло с чем-то подозрительно напоминающим поляризатор или фильтр и ИК-подсветка (красная лампочка) для ночной съёмки. Стоит отметить, что матрица жёстко закреплена на корпусе фотоаппарата. Следовательно, все вибрации Ваших рук будут без труда напрямую передаваться на саму матриц, что, согласитесь, никак не способствует качественной фотосъёмке. Видимо, DarkWood имеет железобетонные нервы.

Что между тем не помешало ему, «утопить» свой любимый фотоаппарат. Помните, когда летом Вы оправитесь в тёплые страны на море и будете пытаться сфотографировать очередную накатывающую волну, что фотоаппарат – устройство, в котором токи могут приводить к коррозии.

Сразу видно, что Canon – чуть более продвинутая, более современная модель, нежели Pentax. Например, матрица подпружинена (на левом нижнем изображении хорошо различимы маленькие пружинки). Такая пассивная система стабилизации изображения способствует получению более качественных и чётких снимков, если, конечно, Вы не неврастеник в запущенной стадии!

Кстати, на фото справа внизу отчётливо виден громадный конденсатор, отвечающий за вспышку, из-за проблем с которым мне когда-то пришлось списать свою цифровую мыльницу Canon.

Камера мобильного телефона

Начнём наши изыскания с камеры мобильного телефона, которой будет посвящено не так много времени и слов в этой статье по причине того, что сама матрица имеет совершенно микроскопические размеры и с ней трудно работать (пилить, шлифовать).

Как не сложно заметить, на оптических микрофотографиях ниже матрица у края имеет две зоны: более светлую и более тёмную. Надеюсь, что все уже догадались: под светлой стороной нет диодов, она нанесена просто так, с запасом, чтобы максимально закрыть собой тонкую душевную организацию матрицы…

Микрофотографии, полученные с помощью оптического микроскопа, значительно отличаются, от тех, что выдаёт микроскоп электронный. Например, как на счёт «квадратуры сферы»?

Дело в том, что на оптике мы не видим каких-то прозрачных слоёв (да хотя б они и просто менее заметны), тогда как электронная микроскопия – прежде всего метод анализа поверхности, то есть вполне может быть так, что круглые цветные цветофильтры накрыты сверху квадратными «колпаками». При этом размеры такого кубосферического субпикселя составляют около 2,5 микрометров.

Матрица фотоаппарата Pentax

Исследование CCD-матрицы фотоаппарата Pentax начнём с оптических микрофотографий. К моему глубокому сожалению, из-за стерических затруднений, как говорят химики, в системе образец-микроскоп, не удалось снять при больших увеличениях и рассмотреть отдельные субпикселы.

Что-то написано, интересно, а можно тут где-нибудь увидеть имена маленьких китайских детишек?

Каждая посадочная площадка под контакты пронумерована, но не к каждой подведён тот самый контактный провод.

А вот так мы скоро будем учиться считать – с помощью нанотехнологий, естественно…

Чёткая граница между самой матрицей и «обвязкой»

А следующая микрофотография достойна учебника по электронной микроскопии. Знаете, почему электронный микроскоп не является средством измерения? Да-да, именно поэтому: из-за локального накопления заряда, вроде бы сферические объекты вдруг стали эллипсоидами:

Но мы-то знаем, что это сферы…

Далее взглянем на то, что находится вокруг светочувствительной матрицы. Так как я не являюсь специалистом в области создания электронных схем, то боюсь даже предполагать, зачем нужны все эти сложные конструкции и «хитросплетения» проводников, может быть, найдётся кто-нибудь, готовый пояснить назначение приведённых ниже деталей и компонентов (в комментариях, конечно же)?

Непоколебимые столбики, пережившие распил и полировку…

В этих слоях можно запутаться, а чёрту и ногу сломать

Этот выпуск «Взгляд изнутри» — знаковый, после нескольких лет «мытарств» нам, наконец-то, установили новую систему микроанализа, так что в некоторых случаях, я смогу не только приводить красивые картинки, но и пояснять из каких химических элементов увиденное состоит.

А вот и самое интересное – матрица во всей своей красе. Под сеточкой, в ячейках которой расположились микросферы-линзы, можно видеть отдельные фоточувствительные элементы (ну или их останки, точнее сказать затруднительно). Чуть ниже при обсуждении матрицы Canon я в деталях поясню «cross-section» устройство матрицы. Пока же обратимся к данным локального химического анализа. Оказывается, что сетка состоит из вольфрама, а микросферы, по всей видимости, это диоксид кремния, который сверху «укрыт» каким-то полимерным материалом.

Матрица во всей своей сложноустроенной красоте

Возвращаясь к первому СЭМ-изображению в этой главе, хочется отметить, что контактные площадки выполнены из чистого золота (о да!), однако проводники внутри сенсора, по всей видимости, состоят из алюминия, на который тончайшим слоем напылена медь, содержание которой на грани чувствительности прибора.

Матрица фотоаппарата Canon

Продолжим наше погружение в микро- и наномиры мы, как обычно, с оптической микроскопии. Как и в случае с Pentax, матрицу от фотоаппарата Canon не удалось снять на высоком увеличении вследствие геометрических нестыковок. Однако из полученных микрофотографий можно оценить размер отдельного субпикселя – около 1,5 мкм, что гораздо меньше, чем у матрицы мобильного телефона.

Оптические микрофотографии матрицы Canon

Кстати, один из виновников невозможности снимать на оптическом микроскопе при больших увеличениях – «покровное» стекло, закрывающее собой матрицу и её «начинку»:

Хороший кадр: передача за стеклом

Конечно, всегда самое интересное прячется на сколах, где разваливающийся строго упорядоченный мир даёт трещину, позволяющую заглянуть в самые сакраментальные уголки устройства:

Чуть позже мы ещё вернёмся к желтовато-оранжевым областям этой фотографии…

Уже знакомые нам столбики совершенно не понятного предназначения:

Как стойкие оловянные солдатики

Теперь рассмотрим более детально устройство CCD-матрицы. Сверху CCD-матрица покрыта чем-то, напоминающем полимерный слой (1), который защищает фоточувствительные элементы от агрессивной внешней среды. Под ним находятся микролинзы с красителем (2 и 3). Но так как электронная микроскопия не позволяет получать цветные изображения, то точно сказать, окрашена большая или маленькая сферы не представляется возможным. Микролинзы из диоксида кремния (наиболее вероятный материал для их изготовления) закреплены в ячейках вольфрамовой сетки (4), под которой скрывают фоточувствительные элементы (5). И, конечно же, вся эта конструкция покоится на подложке из чистейшего кремния!

С учётом того, что матрица дополнительно защищена «покровным» стеклом, то фотоэлементы защищены лучше, чем президент РФ в своём лимузине (если, конечно, сделать поправку на масштабный фактор).

Устройство матрицы по пунктам.

Но и это ещё не всё. У нас же осталось ещё стёклышко, прикрывающее матрицу, которое, как кажется, является поляризатором. Оно несколько шероховатое по краям, но практически идеально гладкое по всей остальной площади поверхности. Вроде бы оптическая микроскопия не даёт никаких результатов: стекло, как стекло.

Стекло с подозрением на поляризатор: ничего необычного

И только с помощью электронной микроскопии удаётся увидеть химконтраст на изображении и полосатую структуру. Толщина такой «плёнки» составляет всего-навсего 2,5 микрометра, при этом размеры отдельных слоёв 180 и 100 нм, соответственно, для более тёмных и более светлых. На основании данных микроанализа, рискну предположить, что более тёмные области обогащены титаном, а светлые – алюминием. По-моему, это потрясающе!

Оказывается, внутри фотоаппарата своя полосата жизнь!

Послесловие

Такой мир уходящего века CCD-матриц предстал перед нами сегодня.

Спасибо всем (Василию за телефон, Илье и DarkWood за фотоаппараты), кто внёс свой посильный вклад в создание данной статьи. Вы – молодцы, что поддержали в этом нелёгком начинании!

И апофеоз данной статьи, а точнее его апофигей:

Покойтесь с миром, пока мы не придумаем вам нового применения

Источник: habrahabr.ru

Размеры датчиков цифровых камер и тепловизионных изображений

Посмотрим правде в глаза, датчики цифровых камер измеряются нелепыми способами. Если вы пытаетесь понять, к какому размеру относится датчик размером 1/2,8 дюйма, или если вам интересно, чем отличаются измерения тепловизионного датчика, вы попали по адресу.

Датчики 35 мм

Во-первых, давайте уберем широко известный формат 35 мм. Точный размер «35-мм сенсора» составляет 36 × 24 мм, что, кажется, не имеет никакого логического отношения. Это потому, что название относится к 35-мм пленке. , который был наиболее распространенным размером пленки до появления цифровых камер. Он был назван потому, что имел ширину 35 мм, однако звездочки и информация, которую необходимо было включить в пленку, привели к размеру изображения примерно 36 × 24 мм. , цифровым датчикам не нужны звездочки и информация о кадре, но это название прижилось, так что производители цифровых зеркальных камер могли продавать свои камеры с датчиком того же размера, что и их традиционные пленочные камеры (таким образом, вы могли бы использовать те же объективы и ожидать такое же поле зрения). вид.)

Дюймовые дроби

Другие датчики цифровых камер получили свои названия размеров и номера из гораздо более причудливой истории. Когда в 1950-х годах были изобретены видеокамеры, они использовали вакуумные трубки для захвата изображения, подобно тому, как современные телевизоры использовали электронные трубки для отображения изображения. Эти датчики измерялись по внешнему диаметру трубки, что обычно давало пригодное для использования изображение примерно на 2/3 этого размера.

Когда были разработаны цифровые датчики меньшего размера, они решили измерять их на основе размера трубы, если бы она была 19Видеокамера 50-х годов. В результате датчики камеры, которые измеряют себя таким образом (1″, 1/3″, 1/2,8″ и т. д.), обычно имеют размер по диагонали примерно две трети этого диаметра. Однако, что еще хуже, производители часто хотел, чтобы размер сенсора представлял собой более простую дробь, поэтому вместо более точного, например, 9/16 дюйма или 27/32 дюйма, измерения часто округлялись вверх или вниз до ближайшей более простой дроби. Это означает, что можно иметь несколько цифровых датчики, которые все классифицируются как датчики 1/3″, но с разными фактическими размерами.

Поскольку более мелкие цифровые датчики нуждались в большей дифференциации, были добавлены десятичные дроби для измерений между 1/3″ и 1/2″, а также между 1/2″ и 1″. Теперь у нас есть датчики, классифицированные по различным измерениям, включающим дроби с десятичными знаками (1/1,9″, 1/2,8″ и т. д.), но все они по-прежнему являются грубыми приближениями того, каким может быть размер диагональной трубы. Что еще хуже, практика измерения датчиков на основе их диагональных измерений означает, что датчики с широкоэкранным соотношением сторон попадают в другую категорию размеров, чем датчики той же ширины, но с соотношением сторон 4:3. Это означает, что меньший широкоэкранный датчик может предложить более широкое поле зрения, чем больший «полноэкранный» датчик.

Если вы углубитесь в технические характеристики цифрового датчика изображения, вы в конечном итоге найдете измерение «шага пикселя» датчика. Шаг пикселя — более точное и простое измерение, которое, к сожалению, не часто упоминается в стандартных спецификациях камеры. С другой стороны, тепловизионные датчики (MWIR и MWIR), а также датчики SWIR измеряются по шагу пикселя.

Шаг пикселя — это просто ширина пикселя на датчике, обычно измеряемая в микронах (мкм). Это упрощает расчет общего размера сенсора: просто умножьте разрешение на шаг пикселя. К сожалению, это создает путаницу, когда речь заходит о том, как размеры тепловизора или датчика SWIR влияют на поле зрения и уровень детализации камеры.

При использовании стандартных датчиков видимого диапазона увеличение разрешения без изменения размера датчика увеличивает количество деталей в изображении, однако при использовании тепловизионных камер увеличение разрешения при сохранении шага пикселя дает такое же количество деталей на изображении, но с более широким полем зрения.

проекция-калькулятор-матрица — Googlesuche

AlleBilderVideosShoppingMapsNewsBücher

suchoptionen

Orthogonal Projection Matrix Calculator — Linear Algebra

www.sidetrackin.com › линейная алгебра › ортогональная-…

Матричный калькулятор ортогональной проекции — Линейная алгебра. Проекция на подпространство.. P=A(AtA)−1At P = A ( A t A ) − 1 A t.

Калькулятор векторной проекции — eMathHelp

www.emathhelp.net › калькуляторы › линейная алгебра

Поэтапный расчет векторной проекции. Калькулятор найдет векторную проекцию одного вектора на другой с показанными шагами.

Калькулятор векторной проекции — Symbolab

www.symbolab.com › … › Vectors

Бесплатный калькулятор векторной проекции — найдите векторную проекцию … Для матриц нет такой вещи, как деление, вы можете умножать, но не можете’ т разделить.

Калькулятор векторных проекций B на A — AtoZmath.com

atozmath.com › Векторы

Калькулятор векторных проекций B на A — Онлайн Калькулятор векторных проекций B на A, шаг за шагом онлайн.

Ähnliche Fragen

Что такое проекция матрицы?

Как рассчитать проекцию?

Что такое проекционный калькулятор?

Калькулятор векторной проекции — Найдите проекцию u на v моментов.

Как рассчитать матрицу проекции камеры? — MATLAB Ответы

de.

Размеры матрицы цифрового фотоаппарата: типы, размер, разрешение, светочувствительность, уход

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх