Матрица sony – Эксперт Sony Александр Бахтурин делает обзор матриц. Часть 2

Эксперт Sony Александр Бахтурин делает обзор матриц. Часть 2

Александр Бахтурин


Преподаватель отдела маркетинга, эксперт компании Sony

Продолжение материала. Начало (часть 1) читайте здесь.

Помню, как сквозь шесть-восемь рядов людей, окружавших в первый день фотовыставки стенд Canon весной 2002 года, прорывались к стендистам два седых профессора-физика: «Ребята, в новых каталогах везде ошибка! Там написано, что сенсор «комоп», а этого не может быть, там же «пэ-зэ-эс»! Передайте японцам, у вас где-то неправильно перевели и теперь все повторяют ошибку! ПЗС — это сенсор цифровых камер, а КМОП — это так, ячейка врЕменной памяти, она не способна фиксировать заряд!» — «Уважаемые, это не ошибка, это действительно так, но осталось одно название КМОП, а внутри — всё изменено и работает по-другому». — «Да вы с кем, сопляки, разговариваете! Да нам лучше знать, что и как может работать! Вы ошиблись, вы необразованные пентюхи! Немедленно зовите главного японца!» Слава Богу, что рядом были два выпускника физфака — из МГУ и МИРЭА. Но воплей было ещё на час.

 

КМОП/CMOS

CMOS — complementary metal-oxide-semiconductor — переводится, как комплементарная структура металл-оксид-полупроводник, то есть с дополняющими друг друга полупроводниками. Накапливаемый заряд считывается с каждого пикселя индивидуально. Изначально в 1963 году КМОП-матрицу придумал Фрэнк Вонлас из компании Fairchild, но длительное время развивавшаяся технология ПЗС «отбивала желание» думать в этом направлении.

Отсюда удивление многих фотографов тем, что в современных цифровых камерах сенсор может быть не закрыт от света затвором, например, при смене оптики. Зато у него появляется множество дополнительных возможностей. Недостаток в изначальной медленности процессов, сложности производства, в окружённости фотодатчика огромным количеством управляющих элементов.

Только когда к 1990 году стало ясно, что при больших сенсОрных массивах происходит рассеивание энергии заряда, а перегревом микросхемы стало трудно управлять, технология КМОП «всплыла» в поле зрения исследователей. С проблемой защищённости от статического заряда справились не сразу.

Приведу такое сравнение. ПЗС-матрица подобна площади, заставленной чашками, в которые падают дождевые капли; накопившаяся влага переливается линейно в соседние чашки. И так она достигает самого края площади, где все собирается в большой емкости, где и взвешивается. КМОП-сенсор не собирает воду, а сразу пропускает в трубку, в которой стоит турбина, скорость вращения которой и сообщает о количестве воды.

В начале 2000-х годов совершенно неожиданно появилось немалое количество фотоохотников за «дУхами и призраками», которые неожиданно возникали на снимках. На изображении появлялись «из ниоткуда» посторонние полупрозрачные предметы, что-то смутно напоминающие. Или вдруг жаждущий консультации заявлял, что желает «фотографировать объекты в ультрафиолете» — в действительности он искал метод съёмки «потустороннего». Но образования не хватает, и он называет инфракрасную съёмку … ультрафиолетовой.

Было замечено, что любая «грязь» — это пыль, тонкослойные жировые покрытия, влага на поверхности передней линзы объектива, и все это моментально вызывает усиленное образование «артефактов». Я едва не стал «иконой стиля» в подобной мистической съёмке, применив на деле простые методы из арсенала портретной и научной фотографии: тонкие стёкла, плёнки и полупропускающие зеркала. Конечно, тут же разоблачил сам себя и вызвал волну недовольства… На самом деле, для основной массы фотографов причин было три: неумение фотографировать; использование дешёвой, непросветлённой и плохо чернёной оптики без защитных светофильтров в контровом и боковом свете; и основная — несовершенство тогдашних сенсоров и процессоров дешёвых цифровых фотокамер.

При получении «ghosts» на фотоплёнке последняя причина (несовершенство тогдашних сенсоров и процессоров…) заменялась уймой оптических и «химических» проблем при фотопечати. Сенсор бликовал сам по себе, ослеплялся переотражениями от плохого объектива, сдваивал и страивал сигнал. Первые простые CMOS не были защищены от статического электричества, и возникали подобия наложений перевёрнутых элементов изображения, когда они неожиданно из буфера ещё раз (!) сбрасывались в процессор. К тому же и программное обеспечение процессора не было совершенным.

Субмикронная фотолитография, замена кремниевой подложки на алюминиевую, а затем медную, реализация в 1993 году фототранзисторной технологии Active Pixel Sensors с усилителями сигналов, изобретение компанией Sony технологии Exmor в 2008 году — все это сделало КМОП основой современной цифровой фотографии.

Внутри каждого пикселя, под сенсорной поверхностью, расположен усилитель сигнала, ряд преобразователей и ускорителей, передающих уже цифровой сигнал в процессор. При этом важнейшая особенность КМОП — это возможность одновременного полнокадрового прогрессивного считывания всей информации. Считывание не нуждается в накоплении заряда «от соседей», и происходит индивидуально, что открыло возможности зонального считывания, зонального подавления шумов и прочего. Информация собирается в картинку в процессоре.

Теперь, когда при ручной фокусировке мы видим увеличенную в 8-10 раз запрошенную зону изображения, остальные при этом не читаются. Цепочки усиления, буферы и делители позволяют получить сигнал, достаточный для выполнения в каждом пикселе или группе ряда аналитических задач: экспонометрии, баланса белого, фазовой и контрастностной фокусировки.

 

Структура матрицы Sony Exmor

Матрицы Exmor, производство которых компания Sony начала в 2007 году, позволили построить слоистые оптимизированные структуры, но имели лишние поддерживающие элементы и проводники перед ячейкой (такие назывались front light). В 2009 году вышла матрица BSI-Exmor-RS с «задней подсветкой», её «рабочий отрезок» от микролинзы до пикселя уменьшен втрое, ходу луча света ничто не препятствует, а расстояние до «соседа» отсутствует — даже микролинзы плавно переходят друг в друга. Все вспомогательные и управляющие структуры каждого пикселя убраны в нижние слои, уже из 5 или 7.

Стало возможным увеличить диаметр датчика. Чувствительность и динамический диапазон обогнали ПЗС. А нагрев? Поскольку аналоговый сигнал тут же преобразуется в каждом пикселе в цифровой, нагрев отсутствует. Кроме того, как отмечалось выше, основное время КМОП сенсор ждёт, а значит, охлаждается, чему способствует металлическая подложка.

Современные CMOS-сенсоры, в отличие от CCD, построены по слоёной схеме и похожи на этажерку.

Сверху – антимуаровый фильтр. Возможно, вскоре он будет встроен в микролинзу и станет отключаемым произвольно или по команде процессора.

Под антимуаровым фильтром расположены микролинзы переменной формы.

Еще ниже — сам фотодиод. В зависимости от положения (чем ближе к краю или углу), тем более он сдвигается от оси микролинзы в ту точку, в которую упадёт сфокусированный луч.

Под чувствительной поверхностью расположен модуль, который компания Sony называет DRAM. Это пять (у телефонов с BCI-CMOS – меньше) этажей из аналогово-цифрового преобразователя, буфера, системы сжатия и цепочки ускорителей (3-20 раз) передачи информационных пакетов по шине данных в LSI – линейный системный интегратор, расположенный перед процессором Sony BIONZ. Ниже — медная и кремниевая подложки сенсора.

Линейный системный интегратор разбирает информацию «по полочкам». В один канал уходит изобразительная информация, в другие два — данные фазового и контрастностного сигнала фокусировки, в следующий — экспозиционная информация, ещё в один — о цвете и его балансе. Эти потоки вливаются в процессор для обработки, почти моментальной. LSI — единственный элемент системы, который греется и нуждается в охлаждении с помощью теплорассеивающей рамы фотоаппарата.

 

Основные типы CMOS-сенсоров Sony

В результате развития технологии выделилось два типа КМОП-сенсора — с большим количеством мегапикселей (при этом их диаметр мал) и с малой «мегапиксельностью». В первом случае камера создаёт огромный файл, который можно обрабатывать и кадрировать (бывали случаи успешной обработки 1/35 площади малоформатного кадра), и останется достаточно для печати выставочного отпечатка. Во втором случае файл меньше, но пиксели настолько огромные и чувствительные, что динамический диапазон оказывается огромным и позволяет снимать при явных дисбалансах яркости или серьёзном недостатке света. Последние хороши для видосъёмки. Собственно, для неё и создавались.

Произошла ещё одна интересная конверсия: видеосенсор, использовавшийся научным подразделением Sony для непрерывной видеофиксации физических процессов в пузырьковой камере ускорителей элементарных частиц был доработан и превращён в великолепный однодюймовый сенсор для компактных и спортивных камер Sony серии RX!

 

МОС/Live-MOS

Сенсоры, разработанные компанией Matsushita, применяются в камерах Panasonic и Olympus. Гениальная оптимизация ПЗС позволила уменьшить потери электронов при регистровой передаче. Появилась возможность прогрессивного сканирования изображения, но сигнал от сенсора в процессор идёт аналоговый. Подобные сенсоры очень хороши для видеосъёмки.

 

Квантовые точки/QuantumFilm

Это — технология будущего. В отличие от огромного (в понятиях микромира) размера современного сенсора, квантовая точка близка к размерам атома. Из них в стеклоподобном носителе собираются градиентные многослойные наноплёнки. Каждая точка — это помещённый в полупроводнике кристалл хлорида меди или вообще только двумерный «электронный газ». Квантовая точка может как поглощать (технология QDSC), так и излучать (QD-LED) фотоны.

 

Продолжение материала (часть 3) читайте здесь.

www.sony.ru

заглянем в будущее? / Разработки / Новости фототехники

Дата публикации: 23.07.2019

Компания Sony опубликовала спецификации шести новых полнокадровых сенсоров изображения. Как всегда, это основные технические данные, ориентированные на потенциальных покупателей чипов. Но простым фотолюбителям они также будут интересны: фактически перед нами характеристики камер ближайшего будущего.

Новые полнокадровые матрицы Sony: заглянем в будущее?

Давайте начнём с Sony IMX521CQR. Это новый новый 15-мегапиксельный сенсор с «учетверённой» (Quad) байеровской структурой. По сути это вариант 61-мегапиксельной матрицы Sony Alpha 7R IV, но с цветным фильтром Quad Bayer от Sony перед ним. Интересно в этом конкретном случае, Sony называет ее 15 МП матрицей вместо 61 МП. В смартфонах, например, мы видим диаметрально противоположный подход. Так сенсор смартфона IMX586 в Sony называют 48 МП Quad Bayer, хотя на выходе он даёт 12 МП. Уже сейчас очевидно, что упор в позиционировании нового сенсора будет сделан именно на малом разрешении. Ждём новую Alpha 7S?

Новые полнокадровые матрицы Sony: заглянем в будущее?

Спецификация предполагает, что матрица может считываться как серия больших пикселей или с раздельным считыванием строк с разной экспозицией, чтобы обеспечить HDR-изображения. Это концептуально очень похоже на режимы SR и DR технологии Fujifilm Super CCD EXR. Возможно, Sony не предоставляет клиентам ноу-хау обработки сигнала с матрицы, которое она использует для восстановления изображения 61 МП. Поэтому чип описывается как предлагающий только 15 МП.

Ещё один интересный чип — это Sony IMX311AQK (48,97 МП). Это многослойная КМОП-матрица, в которой используется повёрнутый на 45 градусов массив пикселей.

Вероятно, логика заключается в том, что массив Байера очень хорошо фиксирует горизонтальные и вертикальные детали, но даёт «лесенку» при фотографировании наклонных линий. Поэтому поворот массива пикселей даст лучшее диагональное разрешение.

Sony также подробно описала спецификации для двух многослойных датчиков, которые используют более традиционную компоновку. IMX554DQC — 30,65 МП матрица, которая позволяет считывать более 36 кадров в секунду. Похоже, перед сенсор будущей топовой репортажной камеры — гипотетической Sony A9 II.

Сенсор IMX313AQK (48,96 МП) может снимать до 10 кадров в секунду в 16-битном режиме и 21 кадр в секунду с 14-битным считыванием.

IMX409BQJ — это 55,16 МП сенсор с обратной засветкой, обеспечивающий до 13,2 кадров/с. В нём не используется многослойная конструкция. Это самая «простая» из матриц будущего. Однако и её характеристики выглядят впечатляюще!

Последний — это IMX410CQX, 24-мегапиксельный сенсор с обратной засветкой (BSI). Он очень похож на матрицы, которые мы уже видели у камер Sony A7 III, Panasonic Lumix DC-S1, Nikon Z6 и Sigma fp.

prophotos.ru

трёхслойный органический чип и первая в мире полностью PDAF матрица / Разработки / Новости фототехники

Дата публикации: 14.10.2019

Кажется, можно констатировать серьёзную борьбу технологий в неожиданном сегменте — фотосенсоров для мобильных телефонов. В последнее время новостями радовал Samsung, точнее специальное подразделение ISOCELL, выпустившее сначала 64-мегапиксельную матрицу, а затем 108-мегапиксельный сенсор. К слову, устройства с первой уже анонсированы и вышли на российский рынок. Речь о Realme XT и Xiaomi Redmi Note 8 Pro.

Узнать цену realme XT и Xiaomi Redmi Note 8 Pro

Настала пора ответить Sony Semiconductors, который что греха таить, почивал на лаврах в 2019 году: SONY IMX586 размером 1/2 дюйма и разрешением 48 Мп стал, кажется, самым популярным сенсором 2019 года.

Два новых сенсора от Sony: трёхслойный органический чип и первая в мире полностью PDAF матрица

Теперь же компания собирается показать сразу два сенсора на 2019 International Electronic Devices Meeting (IEDM). Оба должны поразить фотографов: трёхслойная органическая матрица, которой не нужна будет дебайеризация, и первый в мире КМОП-сенсор с полным покрытием точками фазовой автофокусировки.

Согласно информации Image Sensor World, информация об обоих сенсорах кратко дана в программе мероприятия IEDM 2019, которую случайно опубликовали ранее. Судя по этой программке Sony покажет КМОП-сенсор с квад-байеровским фильтром размером 1/2 дюйма, разрешением 48 Мп с All-PDAF и органический “Three-Layer Stacked Color Image Sensor”.

Первый описывается как первый в мире сенсор, автофокус которого будет работать при освещении в 1 люкс. Второй же должен решить проблему цветокоррекции и потери информации о цвете. Всё это решится автоматически, поэтому не придётся делать дебайеризацию: ведь в сенсоре есть отдельно красный, зелёный и синий слои.

Самое интересное в том, что компания Sony делает попытку “обкатать” технологию на камерах смартфонов и впоследствии перенести её в другие сенсоры — для среднеформатных, APS-C и полнокадровых камер.

prophotos.ru

Матрица sony – Эксперт Sony Александр Бахтурин делает обзор матриц. Часть 2

Отправить ответ

avatar
  Подписаться  
Уведомление о
Пролистать наверх