Динамический диапазон: Динамический диапазон (техника) — Википедия – High Dynamic Range Imaging — Википедия

Динамический диапазон (техника) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 января 2016; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 января 2016; проверки требует 1 правка. У этого термина существуют и другие значения, см. Диапазон.

Динами́ческий диапазо́н — характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления и т. д.), представляющая логарифм отношения максимального и минимального возможных значений величины входного параметра устройства (системы). Минимальное значение обычно определяется уровнем собственных шумов или внешних помех в устройстве, а максимальное — перегрузочной способностью устройства. Понятие динамический диапазон используется не только в технике, но и в психофизиологии, например, динамический диапазон слышимости человека. В отдельных случаях понятие «динамический диапазон» используется и для выходного параметра (для акустических устройств).

  • Динамический диапазон радиоприёмника (тракта в целом, функционального узла тракта) — логарифм отношения уровня сигнала на входе радиоприёмника, определенного по одному из критериев, к чувствительности радиоприёмника. По методике определения (по критерию) различают односигнальный динамический диапазон (динамический диапазон по компрессии) и двухсигнальный динамический диапазон (динамический диапазон по блокированию, динамический диапазон по интермодуляции).
  • Динамический диапазон усилителя — логарифм отношения максимальной амплитуды входного сигнала электронного усилителя, при которой искажения сигнала достигают предельно допустимого значения, к чувствительности усилителя.
  • Динамический диапазон канала связи — логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.
  • Динамический диапазон сканера — показатель технических возможностей сканеров, характеризующий интервал оптических плотностей, который воспринимается сканером
  • Динамический диапазон (фотография) — способность матрицы или плёнки (фотографическая широта) передавать яркость объектов реальной сцены.
    • Динамический диапазон фотоматериала, Фотографическая широта — характеристика светочувствительного материала (фотоплёнки, передающей телевизионной трубки, матрицы), а также фотографического процесса в целом в фотографии, телевидении и кино.
  • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины — М.: Рус. яз., 1993
  • ГОСТ 24375-80 Радиосвязь. Термины и определения

Не полноценная информация,требует обновления.

Динамический диапазон приемника — это диапазон амплитуд входного сигнала, при которых обеспечивается требуемое качество воспроизведения принятого сообщения. Нижняя граница динами­ческого диапазона определяется чувствительностью приемника, ве­рхняя — допустимыми искажениями сигнала. Качество воспроиз­ведения принятого сообщения определяется линейными и нелиней­ными искажениями в каскадах приемника, допустимые значения которых зависят от назначения РПУ. Так, для вещательных и ра­диотелефонных АМ-приемников определяющими являются часто­тные и нелинейные искажения огибающей высокочастотного сиг­нала, а для телевизионных и радиолокационных — фазовые искаже­ния. Частотные искажения в АМ-приемниках обычно оценивают по кривой верности, представляющей зависимость напряжения на вы­ходе приемника (или звукового давления вблизи акустического из­лучателя) от частоты модуляции сигнала.

Что такое динамический диапазон, и какие бывают его разновидности

Односигнальный динамический диапазон по блокированию, Динамический
диапазон по перекрёстным помехам, Динамический диапазон по интермоду-

ляции.

В широком понимании радиотехнической мысли динамический диапазон — это характеристика устройства, выполняющего функцию передачи или преобразованию сигнала, представляющая собой отношение максимального и минимального возможных величин входного сигнала и выраженное в децибельной (логарифмической) единице измерения.

Другими словами — динамический диапазон определяет способность устройства: с одной стороны видеть на выходе обработанный слабый (наименьший) входной сигнал, с другой — обрабатывать сигналы большого уровня с заданным уровнем искажений на выходе.

Нижнюю границу входного сигнала, как правило, определяет чувствительность устройства (не путать с чувствительностью усилителя, при которой достигается номинальная мощность), которая указывает на способность объекта реагировать определённым образом на определённое малое воздействие.
Верхнюю — параметр, называемый

точкой децибельной компрессии и равный такой мощности сигнала на входе, при котором отличие изменения уровня мощности на выходе от асимптотической линейной характеристики составляет величину — 1 dB.

А поскольку в последнюю фразу без пол-литра не въедешь, приведу рисунок.

Динамический диапазон
Рис.1

На Рис.1 красным цветом изображена идеальная линейная (асимптотическая) кривая.
Синим — реальная выходная характеристика нашего устройства.
В качестве входных и выходных значений — величины мощностей, соответственно, на входе и выходе.

Пока обе линии располагаются в непосредственной близости друг от друга — всё хорошо, устройство находится в линейном режиме. Как только расхождение выходного параметра от идеальной кривой достигает 1дБ (в нашем случае соответствует уровню входного сигнала -10дБ) — всё расчёт окончен, точка децибельной компрессии найдена.

Формула, описывающая односигнальный динамический диапазон устройства, предельно проста:
D = P1дб — Pвх мин (дб), где P1дб — точка децибельной компрессии, Pвх мин — чувствительность устройства, выраженная в дБ.
Т.е. в случае, приведённом на графике: D = -10дб — (-120дб) — 110дБ .

Наблюдая показания приборов при нахождении точки компрессии, не всегда удобно оперировать понятиями мощности сигнала, да переводить всё это хозяйство в децибелы — тоже. Поэтому для упрощения задачи напишу — отклонение уровня на 1дБ — это в 1,12 раз по напряжению и в 1,26 раз по мощности.

Ну и, конечно же, формула для определения динамического диапазона при подстановке абсолютных значений сигналов:
Динамический диапазон


И ещё раз:
Uвх макс и Рвх макс — это входные значения, соответствующие точке децибельной компрессии,
Uвх мин и Рвх мин — это напряжение, либо мощность, соответствующие чувствительности агрегата.

А чувствительность агрегата в нашем случае огранена: либо его коэффициентом усиления, либо собственными внутренними шумами, либо и тем и другим одновременно. В целом она равна мощности самого слабого входного сигнала, который, будучи преобразован нашим устройством, выдаёт на-гора выходной уровень, считающийся достаточным для его нормальной фиксации.
А конкретно — этот выходной уровень мы должны распознать на каком-то фиксирующем приборе, либо услышать-увидеть-почувствовать и при этом, он должен быть выше значения собственных шумов нашего девайса.
Насколько выше? Обычно это указывается вместе с показателем чувствительности.

К примеру, чувствительность 10мкВ при соотношении сигнал/шум = 12дБ, означает, что подав на вход сигнал амплитудой 10мкВ, мы на выходе увидим некий отклик, который на 12дБ (т.е. в 3,98 раз по напряжению и 15,85 раз по мощности) будет превышать уровень собственных внутренних шумов нашего устройства.

Описанная динамическая характеристика устройства в первую очередь характеризует его односигнальный динамический диапазон, который определяется методом подачи на вход изучаемого объекта сигнала одной частоты. Иногда этот параметр в радиотехнике именуется динамическим диапазоном по блокированию и обозначается DD1 или DB1.

Теперь давайте подумаем, что случится, если вдруг подать на вход нашего линейного устройства сигналы двух различных частот. А что случится?
При определённом уровне их амплитуд наше устройство выйдет из линейного режима и сигналы начнут взаимодействовать между собой таким образом, что на выходе вместо двух исходных частот появится сложный сигнал с комбинациями частот (гармоник), зависящих от частоты «родительских» сигналов f1 и f2 согласно следующей формуле:

fгарм = n × f1 ± m × f2, где n и m — это целочисленные коэффициенты, принимающие значения от единицы до неких величин, определяемых частотными свойствами применяемых элементов.

В высокочастотной электронике это свойство может быть использовано для преобразования частот в устройствах, называемых «смеситель».

Однако в линейных схемах — это явление крайне нежелательно, потому как является основной причиной возникновения интермодуляционных искажений.
Эти искажения, в свою очередь, приводят: к появлению побочных каналов приёма/передачи в ВЧ радиотехнике, а в усилителях НЧ — появлению посторонних призвуков. Причём, данный тип искажений гораздо неприятнее на слух, чем банальное амплитудное ограничение сигнала. Источник их появления гораздо сложнее обнаружить, а соответственно и устранить.

Ну вот мы медленно, но верно подобрались к определению понятия «динамический диапазон по интермодуляции«.

Динамическим диапазоном по интермодуляции (Dynamic Range) называется характеристика устройства, показывающая его способность противостоять продуктам нелинейного взаимодействия двух или более сигналов. Обозначается — DD3 или DB3.
Другими словами — параметр DB3 характеризует допустимую величину двух сигналов с различными частотами f1 и f2, действующих одновременно на входе устройства, при которой ещё не возникает продукт их взаимодействия (вернее, когда уровень этого продукта не превышает заданного параметра — RFrx). И определяется как отношение, выраженное в дБ, общей мощности этих сигналов к чувствительности устройства.

Измерение динамического диапазона по интермодуляции (DB3) — дело не такое простое, как измерение односигнального DB1. Процесс это сводится к определению суммарной величины, так называемых, продуктов 3-го порядка с частотами 2f1 ± f2, 2f2 ± f1. Приведу формулу для вычисления динамического диапазона:
DB3 = 2/3 × IP3 — Pвх мин (дб), где IP3 — точка пересечения линии уровня интермодуляционных составляющих 3-го порядка на графике передаточной характеристики, а Pвх мин — чувствительность, выраженная в дБ и определяемая собственными шумами устройства.

Динамический диапазон
Рис.2

На Рис.2 красным и синим цветами изображены знакомые нам по Рис.1 динамические характеристики: идеальная и характеристика основных частот входных сигналов (f1 и f2).
Чёрным цветом показана кривая интермодуляционных продуктов 3-го порядка с частотами 2f1 ± f2 и 2f2 ± f1. Данная кривая возрастает в 3 раза быстрее (в децибельном выражении) чем идеальная, поэтому теоретически в некоторой точке эти линии должны сойтись, обозначая точку пересечения по интермодуляции третьего порядка (IP3).
Будучи теоретической — эта точка никогда не может быть достигнута на практике, поскольку смеситель войдёт в режим компрессии сигнала раньше, чем эта точка будет достигнута.

Нахождение данной точки (IP3) — задача не такое простая, как измерение односигнального DB1. Поэтому для облегчения жизни радиолюбителя вводятся некоторые допущения, основанные, исходя из практического опыта. А именно:
В общем случае обычно отмечается, что связь между точкой компрессии 1 дБ и точкой пересечения 3-го порядка, приведённой к входу, имеет вид: IP3 = P1дб + (10…15)дб.
А учитывая, что односигнальный динамический диапазон DB1 описывается формулой:
DB1 = P1дб — Pвх мин (дб), а DB3 = 2/3 × IP3 — Pвх мин (дб), то на основании всех трёх формул можно вывести простую пропорцию: DB3 = 2/3 × (DB1 + (10…15)дб).

Посчитаем. Если односигнальный динамический диапазон по блокированию DB1 равен 110дБ, то:
DB3 ≈ 2/3 × (110дБ + 10дБ) = 80дБ.
Всё — расчёт окончен! Именно на эту величину динамического диапазона по интермодуляции и следует ориентироваться, так как именно она в значительной степени определяет качественные показатели как НЧ, так и ВЧ оборудования!

И напоследок — ещё одна динамическая характеристика, достойная определённого внимания по большей части в радиосвязи — Динамический диапазон по перекрёстным помехам (DD2 или DB2).
Характеристика эта важна в основном для устройств, осуществляющих приём однополосных (SSB) сигналов и определяет степень подавления мощных станций, работающих с АМ модуляцией и расположенных по соседству.
Перекрёстные искажения возникают в УВЧ и преобразователях частоты приёмников при воздействии на эти элементы модулированного мешающего сигнала с частотой, близкой к значению частоты настройки основного канала приёма, например, на частоте соседнего канала.

Процесс измерения этого параметра подобен предыдущему описанию и сводится к определению величины продуктов 2-го порядка с частотами (f1 ± f2) и нахождению точки интермодуляции (IP2) посредством построения такого же графика.
Кривая интермодуляционных продуктов 2-го порядка растёт медленнее, чем 3-го (всего лишь в 2 раза быстрее идеальной передаточной характеристики), а потому и точка пересечения, обозначающая значение IP2, находится дальше от начала координат.

Благодаря «Справочнику радиолюбителя — коротковолновика» под авторством уважаемых С. Бунина и Л. Яйленко, вполне можно довериться компромиссной формуле: DB2 ≈ DB1 — 20 dB, что в нашем случае будет соответствовать 90дБ.

 

Фотографическая широта — Википедия

Фотографи́ческая широта́ — предельный диапазон яркостей, которые фотоматериал способен воспроизводить без искажений[1][2]. Фотографическая широта считается одной из важнейших сенситометрических характеристик фотоматериала и количественно выражается в виде интервала логарифмов экспозиций, в пределах которого обеспечивается пропорциональная передача яркостей объекта съёмки без изменения контраста[3]. Применительно к электронным способам регистрации изображений та же характеристика носит название динамический диапазон и описывает возможности вакуумных передающих трубок или полупроводниковых фотоматриц. В этом случае широта измеряется в децибелах, выражающих диапазон между мощностью сигнала, соответствующего самым тёмным и самым светлым участкам изображения. В цифровой фотографии широта количественно выражается в экспозиционных ступенях[4].

Фотографическая широта L{\displaystyle L} определяется длиной прямолинейного участка 1—2 характеристической кривой и измеряется по оси логарифмов экспозиции lg⁡H{\displaystyle \lg H}

Фотографическая широта в химической фотографии ограничивается максимальной оптической плотностью Dmax{\displaystyle D_{max}}, которую способен обеспечить фотоматериал, и уровнем вуали D0{\displaystyle D_{0}}, ниже которого изменения плотности не зависят от полученной экспозиции. Математически фотографическая широта может быть описана выражением[2]:

L=lg⁡(h3h2)=lg⁡h3−lg⁡h2,{\displaystyle L=\lg \left({\frac {H_{2}}{H_{1}}}\right)=\lg H_{2}-\lg H_{1},}
где L{\displaystyle L} — фотографическая широта,
H{\displaystyle H} — экспозиция.

Точки 1 и 2 соответствуют концам прямолинейного участка характеристической кривой, ограничивающим область правильных экспозиций[5]. За пределами этого отрезка кривая изгибается, снижая контраст изображения. Это приводит к искажениям при отображении полутонов объекта съёмки и снижению качества изображения[6]. Поэтому фотографическая широта всегда меньше полного интервала экспозиций Lmax,{\displaystyle L_{max},} охватывающего отрезок между минимальной и максимальной оптическими плотностями фотоматериала[7].

В практической фотографии фотографическая широта определяет возможность получения качественного снимка сюжетов с большим диапазоном яркостей, когда остаются различимы детали как в самых ярких света́х, так и в глубоких тенях. Кроме качества изображения от широты зависит величина погрешности, допустимой при определении экспозиции[3][8]. Поэтому при производстве негативных фотоматериалов (как чёрно-белых, так и цветных) в них закладывается максимально возможная фотографическая широта, которая может достигать значения 2,0[9]. Широта чёрно-белых негативных фото- и киноплёнок допускает ошибки до 4 ступеней экспозиции: 3 в области передержек, и 1 в сторону недодержки. Цветные негативные плёнки в силу сложного строения и чувствительности к нарушениям цветового баланса допускают лишь 1 ступень передержки экспозиции. За счёт большой широты негативных плёнок при оптической печати возможна проработка деталей отдельных участков снимка путём их затенения или дополнительной «пропечатки» с помощью масок[10].

Большой широтой также обладают фотокиноплёнки для контратипирования, чтобы сохранить как можно больше деталей при многоступенчатом копировании. Позитивные фотоматериалы при высоком контрасте напротив, обладают ограниченной широтой, практически не допуская ошибок экспонирования[11]. Аналогичной чувствительностью к ошибкам обладают обращаемые фотоматериалы, фотографическая широта которых меньше, чем у негативных[12].

{\displaystyle L_{max},} Эффект клиппинга ярких областей неба A при критической недодержке теней B на цифровом снимке

Главным отличием электронных способов преобразования света от химического считаются разные возможности отображения светлых и тёмных участков изображения. Если в аналоговой фотографии в случае экспозиционных ошибок главная опасность заключается в получении «пустых» теней негатива при недодержке, то в цифровой фотографии следует опасаться так называемых «пробитых» светов (клиппинга) из-за передержки. Причина кроется в «эффекте насыщения» полупроводниковых фотоприёмных матриц, когда любое увеличение экспозиции не приводит к изменению выходного сигнала. Учитывая аналогичное фотографической вуали ограничение по шумам, затрудняющее регистрацию полутонов в области теней, фотографическая широта цифровых фотоаппаратов в большинстве случаев меньше, чем цветных, и тем более чёрно-белых негативных плёнок, но сопоставима с фотографической широтой цветного слайда[13].

Дополнительным ограничителем выступают свойства аналогово-цифровых преобразователей, ограничивающих число уровней квантования яркости, отображаемых по каждому из цветовых каналов. Файлы формата JPEG, получаемые на выходе любого цифрового фотоаппарата, ограничены самим стандартом формата, не допускающим глубину цвета, отличную от 8-битного, при этом максимальное количество отображаемых полутонов не превышает 28=256{\displaystyle 2^{8}=256} по каждому из трёх цветоделённых каналов. В фотоаппаратах профессионального и полупрофессионального классов используются более совершенные АЦП, кодирующие файлы в формате RAW по 12 и даже 14-битному алгоритму[4]. В этом случае регистрируется значительно больше полутонов, в последнем случае 214=16384{\displaystyle 2^{14}=16384} полутонов в каждом из цветовых каналов. Поэтому при конвертации этих файлов на внешнем компьютере в формат файла JPEG есть возможность отобразить в конечном 8-битном формате JPEG участки снимка, лишённые деталей при автоматической внутрикамерной конвертации[14][15].

Недостаточную фотографическую широту можно искусственно увеличивать с помощью специальных технологий. Наиболее широкую известность получил процесс под названием HDR[4].

Технология HDR[править | править код]

Получение изображений объектов большего диапазона яркостей, чем фотографическая широта конкретного светочувствительного материала, возможно путём многократной съёмки объекта с разными значениями экспозиции. Полученные таким способом изображения отображают разные участки шкалы яркостей, захватывая кроме средних полутонов глубокие тени и яркие света́. В фотолюбительской практике для такой съёмки применяется термин эксповилка, или «брекетинг» — калька с соответствующего английского термина англ. bracketing. После получения двух и более снимков, сделанных в одних и тех же условиях с разной экспозицией, эти снимки объединяются в один общий, отображающий всю необходимую шкалу полутонов[16]. В некоторых цифровых фотоаппаратах и даже камерафонах этот процесс может выполняться автоматически самой камерой. Недостаток технологии заключается в её непригодности для съёмки движущихся объектов.

Матрицы SuperCCD[править | править код]

В этих матрицах для увеличения фотографической широты используется наличие на одной и той же матрице элементов различной площади и различной эффективной светочувствительности. Передача низких уровней яркости обеспечивается элементами большой чувствительности, а высоких яркостей — низкой[17].

SIMD-матрица[править | править код]

Цифровая SIMD-матрица (сокр. от англ. Single Instruction, Multiple Data) находит применение в камерах видеонаблюдения. В таких матрицах доступна настройка оптимального времени считывания для каждого пикселя в зависимости от уровня освещенности в данном участке кадра. Для этих технологий в данный момент применяется термин «Широкий динамический диапазон» (англ. Wide Dynamic Range).[18].

  1. ↑ Техника фотографии, 1973, с. 79.
  2. 1 2 Справочник кинооператора, 1979, с. 366.
  3. 1 2 Фотокинотехника, 1981, с. 362.
  4. 1 2 3 Динамический диапазон в цифровой фотографии (рус.). Cambridge in Colour. Дата обращения 30 декабря 2018.
  5. ↑ Общий курс фотографии, 1987, с. 94.
  6. ↑ Краткий справочник фотолюбителя, 1985, с. 97.
  7. ↑ Основы чёрно-белых и цветных фотопроцессов, 1990, с. 97.
  8. ↑ Общий курс фотографии, 1987, с. 125.
  9. ↑ Справочник кинооператора, 1979, с. 371.
  10. ↑ Обработка фотографических материалов, 1975, с. 118.
  11. ↑ Техника фотографии, 1973, с. 80.
  12. ↑ Справочник кинооператора, 1979, с. 370.
  13. ↑ Johnson, 2007, с. 151.
  14. ↑ Foto&video, 2007, с. 74.
  15. ↑ JPEG ИЛИ RAW В ЧЁМ ЛУЧШЕ СНИМАТЬ? (рус.). Авторский проект Владимира Соболева (26 ноября 2011). Дата обращения 10 июля 2017.
  16. ↑ программа для изготовления HDR изображений
  17. ↑ Описание матрицы Super-CCD с картинками
  18. ↑ описание WDR камеры Pelco CCC5000 Pixim
  • Гордийчук И. Б. Справочник кинооператора / Гордийчук И. Б., Пелль В. Г.. — М. : Искусство, 1979. — 440 с.
  • Иофис Е. А. Техника фотографии. — М.: «Искусство», 1973. — 349 с.
  • Иофис Е. А. Фотокинотехника / И. Ю. Шебалин. — М.: «Советская энциклопедия», 1981. — С. 362. — 447 с. — 100 000 экз.
  • Л. Я. Крауш. Обработка фотографических материалов / Иофис Е. А.. — М.: «Искусство», 1975. — 192 с. — 100 000 экз.
  • Панфилов Н. Д., Фомин А. А. III. Фотоматериалы // Краткий справочник фотолюбителя. — М.: «Искусство», 1985. — С. 90—122. — 367 с. — 100 000 экз.
  • Редько А. В. Основы чёрно-белых и цветных фотопроцессов / Н. Н. Жердецкая. — М.: «Искусство», 1990. — 256 с. — 50 000 экз. — ISBN 5-210-00390-6.
  • Фомин А. В. Глава IV. Сенситометрия // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.: «Легпромбытиздат», 1987. — С. 75—107. — 256 с. — 50 000 экз.
  • Chris Johnson. Chapter 10. The Zone System and Digital Photography // The Practical Zone System for Film and Digital Photography = Зонная система в цифровой и классической фотографии / Diane Heppner. — 4-е изд.. — Оксфорд: Focal Print, 2007. — 285 с. — ISBN 978-0-240-80756-0.

Динамический диапазон — кому нужен он? / Stereo.ru

Чтобы узнать, нуждается ли в нем ваша акустика — поставьте простой эксперимент. Запустите любой компакт-диск примерно до 90-го года выпуска, и прибавьте газку на усилителе. Звук остался плоским, вялым и невыразительным, как и на малой громкости, да? Я вас поздравляю — акустика справляется только с компрессированными записями.

В 80-х компакт-диски причислялись к High-End. Динамический диапазон уважали и принимали за точку отсчета самое громкое место в альбоме, по которому и выстраивали CD-мастеринг. В начале 90-х пики цифрового сигнала стали потихоньку подтягивать к лимиту в 0 дБ. Громче было нельзя, иначе звуковая волна обрезалась, и не просто, а с искажениями, называемыми клиппингом.

Я отлично помню тот переломный момент, когда вдруг поперли громкие, раскатистые альбомы вроде «The Fat of the Land» (1997) у The Prodigy или «Gran Turismo» (1998) у The Cardigans. Я тогда еще не знал, что во второй половине 90-х на студиях распространились цифровые компрессоры и лимитеры, позволяющие эффективно отсекать пики сигнала и подтягивать к 0 дБ уже основную музыкальную партию, делая ее еще громче, громче и громче. Не скрою, что тогда мне очень понравилось звучание этих новых альбомов. К тому же моя hi-fi система попросту не позволяла раскрыть потенциал «тихих» CD с большим динамическим диапазоном. А свежие издания звучали действительно лихо — и не только у меня. Это и был решающий аргумент в знаменитой loudness war, начавшейся еще в виниловую эпоху, когда продюсеры и музыканты обратили внимание, что громкие синглы лучше привлекают публику. C легкой руки лейбла Motown появился термин «Hot Mastering».

Позже мне стало очевидно, что эти накачанные анаболиками треки невозможно слушать на большой громкости — музыка получается зычная, но пустая, как барабан. Сегодня практически 100% новых записей и ремастеров издается с компрессией динамики. Тенденции не избежали даже тестовые CD. Например, таковой сделалась серия демо-дисков Focal JMLab, начиная с 2000 года. Исключения составляют лейблы с классической музыкой и специальные издания вроде тех, которые делают на Mobile Fidelity Sound Lab.

В loudness war есть своя логика — ведь музыку чаще всего слушают в автомобилях, портативе и мультимедийных системах — фонограмма с большой амплитудой прозвучит там абсолютно беспомощно.

На хорошей, чуткой акустике слышно, что больше всего при компрессии страдает вокал. Студийными эффектами сцену можно сделать сколь угодно широкой, добавить баску, но голос в зажатой динамике потеряет в живости и локализации. Он размажется где-то там, между третьим и четвертым инструментами.

Однако не стоит отчаиваться. Спецификации современных АС с тугими длинноходными динамиками чувствительностью ниже 88 дБ не описывают этот нюанс, но большинство из них адаптировано именно под компрессированный контент. Иначе бы вы не накупили себе столько ремастеров. Самые мудрые и понимающие издатели выпускают (например, Пол Маккартни) в двух вариантах — полнодиапазонном и традиционном «громком». Надеюсь, это станет стандартной процедурой в индустрии. А пока, если интересно получить на руки цифровое измерение динамического здоровья свой аудиоколлекции, поставьте к плееру Foobar соответствующий плагин. Познавательное занятие, честно скажу.

Динамический диапазон и фотографическая широта: liveracing — LiveJournal

Определение


Ввиду смысловой схожести таких фотографических параметров, как динамический диапазон и фотографическая широта, в применении этой терминологии существует изрядная путаница. Природа этой путаницы — в непонимании отношения реальных яркостей к их отображению на плёнке или в цифре. Попробую внести ясность.

Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может каким либо образом зафиксировать  фотоустройство (фотоаппарат, в том числе и цифровой, сканер и т.п.) внутри одного кадра.

Динамический диапазон — максимально возможный полезный диапазон оптических плотностей плёнки, фотобумаги и т.п. или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства.

Таким образом, термин «фотографическая широта» применяется для оценки запечетлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.).

Примеры:

Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.

Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7-1,7 EV.
Динамический диапазон фотобумаги (диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения от 1,2 до 2,5D.

Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, а зеркалок — 3-3,6D.

Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.

Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости.  Но он зависит в основном от используемого цветового профиля и программы отображения, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3-3D (200:1 — 1000:1).

Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6 EV у офисных планшетных до 16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8D у офисных планшетников до 4,9D у профессиональных барабанных сканеров.

Примечание по сканеру: Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница  яркости этого материала фиксирована (абсолютно белый лист или полностью прозрачная плёнка). Поэтому и верхняя граница динамического диапазона матрицы фиксирована, будучи подогнанной под эту максимальную яркость. Следовательно, величины фотографической широты и динамического диапазона совпадают. Кроме того, зная динамический диапазон плёнки (бумаги) и его сдвиг относительно полной прозрачности (абсолютной белизны), можно смело сравнить динамические диапазоны плёнки (бумаги) и сканера, и определить, сможет ли тот или иной сканер оцифровать плёнку (бумагу) без потерь градаций. Для справки: динамический диапазон вуали (максимальной прозрачнгости) фотоплёнок приблизительно составляет 0,1D.

Обшее примечание 1. Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.

Обшее примечание 2. Очевидно, что фотографическая широта и динамический диапазон для одного и того же аналогового фотоустройства или материала имеют разные величины, даже если их попытаться выразить в одинаковых единицах. Для цифровых же фотоустройств эти параметры имеют одну величину. Из-за этого понятие фотошироты обычно подменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично.

Единицы измерения


Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.

Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — log10 или lg), во втором — по основанию 2 (двоичный логарифм — log2 или lb).

Десятичный логарифм используется для компактности шкалы динамического диапазона и соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при геометрически увеличивающимся падении количества света.

Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).

Часто динамический диапазон записывают просто как отношение, например 100:1 (2D) или 1000:1 (3D).

Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:

D = lg(Max/Min)

Формула вычисления фотошироты аналогична, но вместо десятичного логарифма применяется двоичный.

Динамический диапазон цифровых устройств измеряют ещё и в децибеллах. Способ измерения практически аналогичен вышеописанному, поскольку децибел — тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дб), и сейчас я объясню, почему.

Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин: мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы мерием не белы а децибелы, которые в 10 раз меньше.

Однако существует возможность померить в децибелах и амплитудные величины, такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть  зависимость от них соответствующей им энергетической величины.

Вычислим зависимость

мощности от напряжения. Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично. Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:

lg(Umax2/Umin2) = lg(Umax/Umin)2 = 2*lg(Umax/Umin)

Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:

Децибелы = 20*lg(Umax/Umin)

Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.


Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.

Кроме того, принимая во внимание логарифмичность шкал и зная динамический диапазон фотоустройства, можно вычислить его фотографическую широту, и наоборот, по его фотографической широте можно узнать его динамический диапазон. Для этого нужно опять же просто пересчитать диапазон из одной шкалы в другую.

Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Берём десятичный логарифм от двойки и получаем цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.

Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. Поэтому она имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.

Битовая глубина цифрового фотоустройства.


При упоминаниях о динамическом диапазоне фотоустройств иногда упоминается их битовая глубина. Давайте разберёмся, что это такое.

Верхняя граница динамического диапазона матрицы соответствует максимальному количеству электронов, способных возбудиться фотонами в каждом пикселе. Минимальная граница соответствует количеству возбуждённых фотонами электронов, сравнимому с колебанием количества паразитных электронов, находящихся в каждом пикселе в возбуждённом состоянии постоянно (тепловой шум). Если сигнал от постоянно находящихся электронов ещё можно отфильтровать (что и делается), то случайные колебания их количества непредсказуемы.

Между максимальным и минимальным значениями существует большое количество градаций, соответствующих разным яркостям, воспринятым пикселем. Для цифровой фиксации градаций в двоичном представлении требуется некоторое количество бит. Это количество бит и называется битовой глубиной АЦП (аналого-цифрового преобразователя фотоустройства, преобразующего количество возбуждённых электронов в пикселе в ту или иную цифру).

В современных сканерах на каждый из трёх цветов выделяют обычно по 16 бит. В цифровых фотоаппаратах это значение несколько меньше. Но даже там битовая глубина является избыточной, потому что основным ограничением является не разрядность АЦП, а динамический диапазон пикселей, которые пока неспособны накапливать большее количество электронов, или же иметь более низкий показатель случайного теплового шума, чтобы не глушить полезные электроны. В результате, младшие биты избыточной битовой глубины заняты в основном значениями случайного теплового шума.

Диапазон — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2019; проверки требует 1 правка.

Диапазо́н от др.-греч. διὰ πασῶν (χορδῶν) — через все (струны)

  • Диапазон — интервал значений какой-либо величины. Есть несколько различных знаков, которыми может быть обозначен диапазон при письме и печати.
    • Диапазон частот
    • Диапазон в музыке — охват звуковысот между нижней и верхней границами, допустимыми для голоса человека или музыкального инструмента.
  • Диапазон в переносном значении — объём, охват: знаний, интересов и т.п.

Динамический диапазон:

  • Динамический диапазон (техника) — характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления), представляющая логарифм отношения максимального и минимального возможных значений величины входного параметра устройства (системы).
  • Динамический диапазон (масс-спектрометрия)
  • Динамический диапазон в фотографии, HDRI, High Dynamic Range Imaging — комплекс методов получения, хранения и обработки изображений расширенного динамического диапазона.
    • Динамический диапазон фотоматериала, Фотографическая широта — характеристика светочувствительного материала (фотоплёнки, передающей телевизионной трубки, матрицы), а также фотографического процесса в целом в фотографии, телевидении и кино.
  • Динамический диапазон (игры), High Dynamic Range Rendering — комплекс методов рендеринга изображений в 3D графике, направленный на имитацию сцен с большим диапазоном яркости.
  • Динамический диапазон по компрессии — характеристика радиоприёмного устройства. Отношение точки однодецибельной компрессии к мощности собственных шумов приёмника.
  • Контраст — любая значимая или заметная разница, не обязательно измеряемая количественно. Контрастность — степень контраста, чаще всего выраженная количественно в виде безразмерной величины, отношения или логарифма отношений.

Динамический диапазон и фотографическая широта

Новиков М.Г.
18.11.2008

Содержание

Введение

При выборе монитора, сканера, фотоаппарата, а также других устройств, работающих с изображением, мы чаще всего обращаем внимание лишь на одну из их характеристик — разрешающую способность этого устройства. Неудивительно — ведь именно её в первую очередь выпячивают в рекламе, как наиболее простую для понимания широкими массами.

Однако, помимо разрешающей способности, существуют другие, не менее важные для качества картинки, характеристики. Таковыми, например, являются фотографическая широта и динамический диапазон. И если с разрешающей способностью всё более-менее понятно, то с упомянутыми характеристиками часто возникают затруднения. Более того, эти два понятия на первый взгляд кажутся настолько похожими, что вносит только дополнительную путаницу. Попробуем внести ясность в этот вопрос на примерах как аналоговых, так и цифровых устройств.

[Вернуться в начало]

Определение

Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может зафиксировать внутри одного кадра фотоустройство.

Динамический диапазон — максимально возможный полезный диапазон собственных оптических плотностей плёнки, фотобумаги и т.п. (или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства).

Таким образом, термин «фотографическая широта» применяется для оценки запечатлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.). Чувствуете разницу?

В аналоговых устройствах фотографическая широта фотоплёнки не зависит от своего динамического диапазона, поскольку теоретически любой диапазон внешних яркостей может быть закодирован в сколь угодно небольшой диапазон оптических плотностей плёнки. Однако очевидно, что при большом диапазоне оптических плотностей, картинка будет выглядеть лучше и переходы между яркостями будут более качественными, поскольку на микроуровне плёнка всё же хоть и стохастична, но слегка дискретна, а информация о градациях должна где-то храниться.

В цифровых же устройствах изначальная строгая дискретность кодирования изображения является причиной чёткой зависимости фотографической широты от динамического диапазона матрицы. Дело в том, что пиксели матрицы во время экспозиции накапливают определённое количество электронов, линейно зависящее от внешней яркости. Количество электронов — конечное, от единиц до десятков тысяч. Больше определённого предела пиксель чисто физически вместить не сможет. Градация яркостей определяется именно этими количествами электронов. Электроны, когда их счёт идёт на единицы, не могут дать подобие аналоговой, плавно изменяющейся оптической плотности. Без заметной потери градаций, в электроны, число которых и так невелико, большую фотографическую широту не уместить. Вот она и привязана к этому количеству, и линейно от неё зависит. А это количество и есть динамический диапазон.

Из-за такой линейной зависимости понятие фотографической широты часто заменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично. Однако, сравнивая их характеристики с характеристиками аналоговых фотоустройств, об этой особенности не следует забывать.

Если с матрицами всё просто, то отношения между фотографической широтой и динамическим диапазоном плёнки, как вы уже успели заметить, гораздо более сложны. Давайте подробнее рассмотрим их.

Предположим, что фотографическая широта у некоторой плёнки небольшая. Такая плёнка слишком засвечивается в ярких местах кадра и недостаточно — в тёмных. Если мы представим себе, как это происходит, то нам станет очевидно, что в тех местах, которые освещены средне, и не подверглись на плёнке пересвету или недосвету, градации яркости будут проработаны более качественно, чем могло бы быть на плёнке с большой фотографической широтой. Ведь небольшая фотографическая широта плёнки оказывается растянутой на весь её внутренний диапазон оптических плотностей (динамический диапазон). Именно поэтому профессиональные плёнки имеют меньшую фотографическую широту, чем любительские. По той же причине у профессиональных плёнок и диапазон оптических плотностей (динамический диапазон) пытаются сделать как можно шире. В любительских же плёнках за счёт большей фотографической широты фотографу прощается возможная ошибка в экспозиции, но в любом случае ухудшается качество световых переходов.

То же самое и с фотобумагой. Контрастная фотобумага имеет меньшую фотографическую широту, поэтому яркие места кадра становятся ещё ярче, а тёмные — ещё темнее. В целом, фотография становится контрастнее. Такая фотобумага применяется для серых, вялых негативов, имеющих небольшой динамический диапазон. Для резких же кадров с большим динамическим диапазоном больше подходит мягкая фотобумага, которая сможет вместить в себя весь динамический диапазон такого негатива.

Для подведения итога этой главы и закрепления материала, давайте рассмотрим определения фотографической широты и динамического диапазона в применении к различным фотоустройствам и фотоматериалам:

Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.

Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7 EV (контрастная) — 1,7 EV (мягкая).
Динамический диапазон фотобумаги (диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения 1,2-2,5D.

Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, зеркалок — 3-3,6D.

Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные же величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов может быть различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.

Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то применительно к нему этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости. Но величина этого параметра зависит в основном от программы отображения и используемого цветового профиля, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение. Однако существует специальный метод коррекции (тональная компрессия), позволяющий при сохранении фотографической широты увеличить контрастность.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3-3D (200:1 — 1000:1).

Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6-8 EV у офисных планшетных до 13-16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — аналогично матрице фотоаппарата, способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8-2,4D у офисных планшетников до 4-4,9D у профессиональных барабанных сканеров.

Примечание по сканеру: Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница яркости этого материала (абсолютно белый лист или полностью прозрачная плёнка) оказывается известной. Верхняя граница динамического диапазона матрицы сканера заводской калибровкой подгоняется под эту максимальную яркость. Следовательно, верхние края шкал фотографической широты сканера и динамического диапазона плёнки (с учётом её вуали) будут совпадать.

Принимая во внимание, что у цифрового устройства динамический диапазон равен фотографической широте, можно сказать, что будут совпадать верхние края шкал динамических диапазонов сканера и плёнки+вуаль. А значит, наложив их диапазоны друг на друга, мы сможем их корректно сравнить, и определить, сможет ли тот или иной сканер оцифровать плёнку, не обрубив её диапазон. Для справки: динамический диапазон вуали (максимальной прозрачности) фотоплёнок приблизительно составляет 0,1D, и эту цифру при сравнении следует прибавлять к динамическому диапазону плёнки.

Общее примечание: Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.

[Вернуться в начало]

Единицы измерения

Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту — по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.

Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — lg), во втором — по основанию 2 (двоичный логарифм — log2).

Логарифмическая шкала — это удобный способ уложить огромный диапазон значений измеряемого параметра в компактном виде. Можно предположить, что к концу шкалы теряется её точность. Это так, но дело в том, что и органы чувств человека ведут себя так же. Глаз человека, например, может различить небольшой перепад в свете звёзд, но такой же в абсолютных числах перепад яркости двух ярких ламп глаз уже не зафиксирует.

Поэтому десятичный логарифм используется для соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при падении вдвое количества света.

Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).

Часто динамический диапазон записывают в виде отношения, показывающего, во сколько раз между крайними точками диапазона происходит перепад измеряемого параметра, например 100:1 (2D) или 1000:1 (3D). Обычно такой способ записи применяется для указания контрастности мониторов.

Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:

D = lg(Max/Min)

Формула вычисления фотографической широты аналогична, но вместо десятичного логарифма применяется двоичный.

Динамический диапазон цифровых устройств измеряют ещё и в децибелах. Способ измерения практически аналогичен вышеописанному, поскольку децибел — тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дБ), и сейчас я объясню, почему.

Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин: мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы меряем не белы а децибелы, которые в 10 раз меньше.

Однако, существует возможность померить в децибелах и амплитудные величины, такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть зависимость от них соответствующей им энергетической величины. А зависимость эта всегда квадратичная.

Например, вычислим зависимость мощности от напряжения. Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично. Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:

lg(Umax2/Umin2) = lg(Umax/Umin)2 = 2*lg(Umax/Umin)

Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:

Децибелы = 20*lg(Umax/Umin)

Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.

Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.

Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Для этого берём десятичный логарифм от двойки и получаем искомый результат — цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.

Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. В этом случае шкала имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.

[Вернуться в начало]

Динамический диапазон: Динамический диапазон (техника) — Википедия – High Dynamic Range Imaging — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх