Глубина цвета 8 бит: О глубине цвета: 8 или 16 бит?

Содержание

О глубине цвета: 8 или 16 бит?

Понятия битность изображения, битность дисплея, глубина цвета, количество передаваемых оттенков являются производными термина — битовая глубина цвета.

Определение битовой глубины цвета

Это специализированное понятие, используемое в компьютерной графике для описания, хранения информации о количестве поддерживаемых цветов. Если разбираться в вопросе основательно, то глубину цвета устройства, которое так или иначе передает изображение, можно представить как пиксель, работающий в двух режимах: 0 или 1, да или нет, белый или черный цвет. Эта характеристика максимально точно описывает 1 бит. Добавив еще один мы получим уже 4 оттенка изображения, в котором будет не только белый или черный, а еще светло-серый или темно-серый. Добавив еще один, мы получим уже восемь оттенков, включая изначальные черный и белый. Такая логика будет прослеживаться и с дальнейшим увеличением количества бит по формуле: цифра «2» возводится в степень значения битности.

Но пока это всего-лишь оттенки серого, а мы привыкли видеть цветное изображение, за которое отвечают так называемые RGB-пиксели. Они построены на основе трех субпикселей: красный, синий или зеленый. Сочетание различной интенсивности свечения этих элементов и создают все нужные оттенки.

Здесь уже понятие 1 бита несколько меняется и превращается в термин — бит на канал или оттенок. Но ведь получается, что мы уже имеем три бита — по одному на цвет, а это равнозначно восьми отображаемым оттенкам. Следовательно, можно вывести зависимость:

  • 1 бит — 2 цвета;
  • 2 — 4;
  • 3 — 8;
  • 4 — 16;

  • 8 — 256;
  • 16 — 65 536.

Она отображает количество оттенков на канал, то есть 8-битное изображение может хранить 256 оттенков красного, 256 зеленого и 256 синего.



Как определяются параметры глубины цвета?

Здесь стоит отметить сразу несколько факторов:

  1. Производитель может указывать битность изображения по-разному. Некоторые дисплеи в своих характеристиках могут отображать, как 8, так и 48 бит. В этом случае нужно внимательно изучить подробные данные о покупаемом продукте, ведь 48 — это 16 на поток. Но конкретно тут указана сумма этих потоков, что может несколько сбить с толку потенциального покупателя.
  2. Бытует некое мнение о том, что человеческий глаз может различить определённое количество оттенков, а все, что находится за этими пределами уже не несет полезной информации. Следовательно, кто-то может утверждать, что все, что выше 8-ми бит попросту бесполезно, ведь количество отображаемых оттенков при глубине 16 bit составляет невероятные 65530 цветов на канал.

А теперь разберемся по порядку: как правильно определяется цветовая глубина и почему, чем больше, тем лучше.

Во-первых, если по какой-либо причине информации о поддерживаемой битности устройства нет, то ее можно узнать из настроек компьютера или другого устройства, с которого выводится изображение.

Достаточно зайти в настройки дисплея и проверить максимально доступные значения. Как правило, система указывает значение битов на канал, а не их сумму.

Также правильно определить битность может помочь максимальное отображаемое количество цветов. Метод не самый удобный, но некоторые производители часто указывают именно это. Большинство современных мониторов или телевизоров среднего ценового сегмента поддерживают изображение 8 бит. А подсчитать количество цветов нам поможет информация выше, а именно: 8 бит на канал — это 256 цветов, следовательно, три канала по 256 оттенков смогут вместе отобразить 256х256х256=16 777 216 оттенков. Именно цифра в 16,7 миллионов цветов часто фигурирует в характеристиках различных дисплеев, что соответствует как раз для 8-битной передачи изображения.

И, во-вторых, ученые пока не могут точно подсчитать количество видимых человеческим глазом оттенков. Тут много факторов, начиная с того, что женщины воспринимают и видят цвета немного иначе, чем мужчины, заканчивая генетическими мутациями, которые позволяют глазу видеть около 100 000 000 различных оттенков. Следовательно, увидеть разницу между 8 и 10-битной передачей получится довольно успешно.

Развитие технологий можно наблюдать, если на экран с глубиной 8 бит вывести изображение на 10. Это возможно благодаря все большему распространению видеокарт и оборудования, способного выводить картинку на качественно другом уровне. В этот момент используется так называемая технология FRC или процесс сглаживания, что позволяет сгладить видимые недостатки 8-битного экрана. Результирующее изображение будет смотреться приятнее, чем 8-битное, но до 10-битного ему еще далеко. Но следует помнить, что это всего-лишь программная обработка, которая путем частого мигания пикселей накладывает оттенки таким образом, чтобы вывести контент, находящийся на порядок выше.

В чем разница между 8 и 16 бит

Вот мы и подобрались к сути проблемы, возникающей перед выбором современного экрана. Новые форматы изображения часто используют такие технологии, как HDR или Dolby Vision, которые не смогут раскрыться в полной мере при использовании глубины всего 8 бит. Для этих целей нужно выбирать экраны, способные передать куда более широкую палитру.

Также нужно отметить, что материал, созданный на основе цветовой глубины 16 бит не будет отображаться на 8-битном экране так, как его задумал автор, что может сильно повлиять на конечный результат. 16-битный экран способен отобразить максимально плавные переходы между оттенками и глубже передать контрастные участки в динамических сценах. Это именно то, чего добиться в 8-битном экране попросту не получится.

Так на что же обратить внимание при выборе LED-экрана?

На этот вопрос выйдет ответить лишь тщательно разобравшись в параметрах, которые стоят перед экраном.

Выбрав размер и разрешение, следует обратить внимание на то, какой именно контент будет отображаться на устройстве. Если взять во внимание сказанное выше, то при выведении статичных картинок или текстовой информации вполне будет достаточно и экрана с глубиной 8 бит. Это будет логичный выбор в пользу сэкономленного бюджета.

Но при необходимости донести до зрителя глубокий и качественный материал, следует обратить внимание именно на экраны с глубиной цвета 16 бит, ведь их возможности куда шире и способны передать мелочи, способные зацепить и отпечататься в памяти зрителя.

8 или 16 бит: какая глубина цвета вам нужна?

«Битовая глубина цвета» — это один из тех терминов, с которыми мы все сталкиваемся ежедневно, но очень немногие фотографы действительно понимают. Photoshop предлагает 8, 16 и 32-битные форматы файлов. Иногда мы видим файлы, называемые 24 или 48-битные. В настройках своей камеры вы можете найти выбор из 12- или 14-битных файлов. Что все это значит и что действительно имеет значение?

Что такое битовая глубина цвета?

Википедия дает исчерпывающее определение: Глубина цвета — термин компьютерной графики, означающий количество бит (объём памяти), используемое для хранения и представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксел (англ. bits per pixelbpp).

Исчерпывающе, но не очень понятно. Давайте разберемся.

Прежде чем сравнивать различные варианты битовой глубины цвета, давайте сначала обсудим, что означает наименование. «Бит» — это компьютерный способ хранения информации в виде 1 или 0. Один бит не очень хорош для чего-либо, кроме «да» или «нет», потому что он может иметь только 2 значения. Если бы это был пиксель изображения, он был бы чисто черным или чисто белым. Не очень полезно.

Чтобы описать более сложный цвет, мы можем объединить несколько битов. Каждый раз, когда мы добавляем еще один бит, количество возможных комбинаций удваивается. Один бит имеет 2 возможных значения, 0 или 1. Когда вы объединяете 2 бита, вы можете иметь четыре возможных значения (00, 01, 10 и 11). Когда вы комбинируете 3 бита, вы можете иметь восемь возможных значений (000, 001, 010, 011, 100, 101, 110 и 111). И так далее. Как правило, число возможных вариантов выбора увеличивается как 2 в степени количества бит. Итак, «8-бит» = два в восьмой степени = 256 возможных целочисленных значений. В Photoshop это представляется как целые числа 0-255 (внутренне для компьютера это двоичный код от 00000000 до 11111111 ). При этом 0 — это черный цвет, 255 — белый. А между этими значениями мы получаем значения цвета, плавно изменяющиеся от черного к белому.

Таким образом, «битовая глубина» определяет, самые маленькие изменения, которые вы можете сделать, относительно некоторого диапазона значений. Если наше изображение является 2-битным, шкалой является яркость из четырех значений: черный, темные средние тона, светлые средние тона и белый. Но если у нас достаточно бит, у нас достаточно серых значений, чтобы сделать то, что кажется идеально плавным градиентом от черного к белому.

На картинке выше пример, сравнивающий градиент от черного к белому с разной битовой глубиной. В зависимости от качества вашего монитора, вы можете увидеть различия только до 8-10 бит.

Как определяется битовая глубина?

Было бы удобно, если бы все «битовые глубины» можно было сравнивать напрямую, но есть некоторые вариации в терминологии, которые полезно понять.

Обратите внимание, что изображение выше является черно-белым изображением. Цветное изображение обычно состоит из трех
каналов красной, зеленой и синей цветности, комбинации которых дают нам возможность создавать различные цвета. Программное обеспечение для фотографий (например, Photoshop и Lightroom) оперирует количеством бит на канал. Таким образом, 8 бит означает 8 бит на канал. Это означает, что 8-битное изображение RGB в Photoshop будет иметь в общей сложности 24 бита, описывающих один пиксель изображения (8 для красного, 8 для зеленого и 8 для синего). 16-битное изображение RGB или LAB в Photoshop будет иметь 48 бит на пиксель и т. д.

Из выше сказанного можно предположить, что 16-битное изображение означает 16-бит на канал в Photoshop. Ну, это так, и это не так одновременно. Фотошоп нас обманывает и на самом деле 16-битные файлы он обрабатывает как 15-битные плис 1 бит. Это так и называют 15+1 бит. Это означает, что вместо 2 в степени 16 возможных значений (которые были бы 65 536 возможных значений), есть только 2 ^ 15 + 1 возможных значений (что составляет 32 768 + 1 = 32 769 возможных значений). Так что с точки зрения качества было бы очень справедливо сказать, что 16-битный режим Adobe на самом деле только 15-битный. Не верите мне? Посмотрите на 16-битную шкалу в панели «Информация» в Photoshop, которая показывает шкалу от 0 до 32 768 (что составляет 32 769 значений, поскольку мы включаем 0).

Почему Adobe это делает? По словам разработчика Adobe Криса Кокса, это позволяет Photoshop работать намного быстрее и обеспечивает точную среднюю точку для диапазона, что полезно для режимов наложения). Стоит ли беспокоиться об этой «потере» 1 бита? Нет, совсем нет (15-битных данных вполне достаточно, как мы обсудим ниже).

Сколько бит вы можете увидеть?

На чистом градиенте я могу лично обнаружить полосы в 9-битном варианте (то есть 2048 оттенков серого) как на моем дисплее MacBook Pro Retina 2018 года, так и на 10-битном мониторе Eizo. 9-битный градиент очень слабый (едва заметный) на обоих дисплеях. Я почти наверняка не заметил бы его, если бы не присматривался специально. И даже когда я присматриваюсь, я не могу легко сказать точно, где края полос по сравнению с 10-битным градиентом. Я бы почти сказал, что на 9 битах нет полос. 8-битный градиент относительно легко увидеть при просмотре, хотя я все еще мог бы его пропустить, если бы не обращал внимания. Поэтому для моих целей 10-битный градиент визуально идентичен 14-битному или более.

Надо сказать, что на стандартном мониторе среднего ноутбука, полосы еще можно разглядеть на 7-битном градиенте, тогда как градиент 8 — бит выглядит также как и градиент 9- 10- и более бит.

Зачем использовать больше бит, чем можно видеть?

Почему у нас есть варианты более 10 бит в наших камерах и фотошопе? Если бы мы никогда не редактировали фотографии, не было бы необходимости добавлять больше бит, чем может видеть человеческий глаз. Однако, когда мы начинаем редактировать фотографии, могут легко начать отображаться ранее скрытые различия.

При манипуляциях с фотографией программа делает незначительные ошибки или ошибки округления в данных более очевидными. Увеличение контрастности изображения похоже на уменьшение битовой глубины. Если мы достаточно сильно манипулируем фотографией, на плавных градиентах начнет проявляться «полосатость» или ступенчатость. Ступенчатость — очевидные дискретные переходы от одного цвета или тона к другому (вместо плавного градиента). Вы уже видели теоретический пример с низкими битовыми градиентами выше. Типичным примером в реальном мире могут быть различные «полосы», появляющиеся на ясном голубом небе.

Так сколько бит вам действительно нужно в камере?

Коррекция экспозиции на постобработке на 4-ступени равносильно потери чуть более 4 бит. 3-ступенчатое изменение экспозиции ближе всего к потере 2 битов. Я редко регулирую экспозицию RAW-фалов до +/- 4 ступени, но это может случиться с экстремальными ситуациями или плохо проэкспонированными частями изображения. Поэтому я бы посоветовал иметь в запасе дополнительные 4-5 бит по сравнению с пределами видимой полосы, чтобы быть в безопасности. Если принять за предел 9-10 бит, то чтобы избежать видимой полосатости, нам нужно снимать примерно в 14-15 бит.

В действительности, вам, вероятно, никогда не понадобится так много бит по нескольким причинам:

  • Не так много ситуаций, когда вы можете столкнуться с идеальным градиентом. Ясное голубое небо, вероятно, наиболее вероятный случай. В других изображениях намного сложнее увидеть разницу в битовой глубине.
  • Цвет предлагает большую битовую глубину. Мое обсуждение здесь ограничивается одним черно-белым каналом. Если вы обрабатываете черно-белые фотографии, то эти цифры относятся непосредственно к вам. Но если вы обрабатываете в цвете, у вас, вероятно, будет немного больше места для маневра.
  • Точность вашей камеры не так высока, как всем нам хотелось бы. Другими словами, в вашем изображении всегда есть шум. Из-за этого шума при определенной глубине цвета огрехи в градиентах намного сложнее увидеть.
  • Вы можете удалить ступенчатость переходов на постобработке, используя комбинация размытия по Гауссу и / или добавления шума.
  • Дополнительные биты в основном имеют значение только для экстремальных тональных коррекций.

Принимая все это во внимание, 12-бит для изображения звучит как очень разумный уровень детализации, который допускает значительную постобработку.

Подытожим:

  • не снимайте в JPG (8 бит).
  • 12-битный файл RAW отлично подходит для большинства работ и обеспечивает значительную экономию места по сравнению с 14-битным RAW. Это лучший выбор, если вы заботитесь о размере файла.
  • Если вы хотите получить абсолютное наилучшее качество в тенях, снимайте 14-битные файлы RAW (в идеале, используя сжатия без потерь, чтобы сэкономить место). Это лучший выбор, если вы не заботитесь о больших файлах и снимаете сцены с широким динамическим диапазоном (глубокие тени).
  • Если вы можете снимать в 16 бит, это хорошо, но, вероятно, избыточно. Стоит протестировать фотографии с вашей камеры, чтобы увидеть, можете ли вы использовать меньшие настройки, чтобы сэкономить на размере файла.

Сколько бит нужно для интернета?

Преимущества 16-битного режима заключаются в возможности манипулировать изображением, не вызывая проблем. Преобразовав окончательно отредактированного изображения в 8-битное, вы не увидите никакой разницы, и к тому же файл будет гораздо меньшего размера, что важно для более быстрой загрузки / выгрузки. Убедитесь, что сглаживание в Photoshop включено. Перейдите в Edit / Color Settings и убедитесь, что установлен флажок «Использовать дизеринг (8-битные / канальные изображения)». Если вы используете Lightroom для экспорта в JPG, дизеринг используется автоматически (у вас нет выбора). Это помогает добавить немного шума, который должен минимизировать риск появления ступенчатости при окончательном преобразовании в 8 бит.

Сколько бит нужно для печати?

Что делать, если вы отправляете свои изображения через Интернет для печати профессиональной лабораторией? Многие лаборатории примут 16-битные файлы TIF, и это отличный вариант. Однако, если лаборатория требует JPG или вы хотите отправить файл меньшего размера, у вас могут возникнуть вопросы о преобразовании в 8-бит. Если ваша лаборатория печати принимает 16-битные форматы (TIFF, PSD, JPEG2000), то проблем нет — но лучше спросите их, что они рекомендуют, если вы не уверены.

Если вам нужно отправить JPG, он будет в 8 битах, но это не должно быть проблемой. На самом деле, 8-битные данные подходят для окончательного вывода на печать. Помните, что большинство проблем с 8-разрядными процессами вызвано внесением изменений в 8-разрядные данные, а не первоначальным преобразованием. Я напечатал сотни очень высококачественных изображений, которые были загружены моему поставщику в виде 8-битных файлов JPG, и окончательные изображения выглядят потрясающе (экспортировано из Lightroom с качеством 90% и цветовым пространством Adobe RGB). Я бы порекомендовал внесить все изменения (сглаживание, преобразование цветового пространства, повышение резкости и т. д.) перед преобразованием в 8-битное.

Если вы не видите полосы на мониторе после преобразования в 8-битное, то все должно быть в порядке и на печати. Однако вы можете помочь избежать потенциальных проблем, убедившись, что Photoshop использует дизеринг для преобразования в 8-битные.

В чем разница между глубиной цвета и цветовым пространством?

Битовая глубина цвета определяет количество возможных значений или приращений. Цветовое пространство определяет максимальные значения или диапазон (обычно известный как «цветовой охват»). Если бы вы использовали коробку с карандашами в качестве примера, большая битовая глубина была бы похожа на большее количество оттенков (больше цветных карандашей), а большой цветовой охват — как если бы наиболее насыщенный цвет был более насыщенным (независимо от количества цветных карандашей). Чтобы увидеть разницу, рассмотрим следующий упрощенный визуальный пример:

Как вы можете видеть, увеличение глубины в битах снижает риск появления полосатости в градиентах за счет создания большего приращения, а расширение цветового пространства (более широкий цветовой охват) позволяет использовать более экстремальные цвета. Но эти два параметра взаимодействуют друг с другом. Чем больше цветовой охват, тем больше вероятность появления ступенчатых градиентов при одной и той же битовой глубине цвета.

Смотрите в будущее

Как мы уже говорили выше, иногда выбор битовой глубины не имеет значения сегодня. То же самое относится и к мониторам и принтерам. Но в будущем ваш монитор или принтер могут могут иметь лучшую битовую глубину и цветовой охват. Рекомендую хранить свои рабочие файлы не более чем в 16-бит по нескольким причинам: (1) это больше, чем большинство мониторов и принтеров есть или будет в обозримом будущем, и (2) такая глубина цвета остается далеко за пределами нашей способности видеть различия.

Однако, цветовой охват другое дело. Скорее всего, у вас есть монитор с цветовой гаммой sRGB. Если у вас монитор «с расширенным цветовым охватом» (Adobe RGB) или P3, то у вас очень широкий цветовой охват (Adobe RGB расширяет голубые / голубые / зеленые цвета больше, чем P3, а P3 расширяет красные / желтые / зеленые дальше, чем Adobe RGB).

Помимо мониторов P3, в продаже имеются принтеры, которые также превосходят цветовой охват AdobeRGB (особенно в цианах). Таким образом, и sRGB, и AdobeRGB уже не в состоянии охватить весь спектр цветов, которые можно воссоздать на мониторе или принтере сегодня. По этой причине сейчас стоит использовать более широкий цветовой охват , чтобы ваш рабочий файл впоследствии мог использовать преимущества более качественных принтеров и мониторов, таких как ProPhoto RGB. Конечно, вам нужно будет преобразовать RAW в широкую гамму во время первоначального экспорта, переключение цветового пространства в дальнейшем не приведет к восстановлению цветов, которые вы отбрасывали ранее в процессе. И как обсуждалось выше, более широкий
цветовой охват должен использоваться с 16-битными файлами.

Автор: Greg Benz – фотограф из Миннеаполиса, штат Миннесота.

Что такое 8-бит, 10-бит, 12-бит, 4:4:4, 4:2:2 и 4:2:0 | Датавидео

Что такое 8-бит, 10-бит, 12-бит, 4:4:4, 4:2:2 и 4:2:0

07 января 2020 г.

Когда дело доходит до производства цифрового видео, мы часто видим 8-битную, 10-битную или даже 12-битную спецификацию обработки изображений. Иногда на записывающих устройствах также можно встретить такие числа, как 4:4:4, 4:2:2 и 4:2:0. Что именно означают эти цифры и как они влияют на качество изображения и цвета? Мы ответим на все ваши вопросы в этой статье.

Что такое 8-битная, 10-битная и 12-битная глубина цвета?

Глубина цвета также известна как битовая глубина, которая относится к числу битов, используемых для определения цветовых каналов, красного, зеленого или синего, для каждого пикселя.

В большинстве систем RGB имеется 256 оттенков на цветовой канал. Если вы достаточно хорошо знаете двоичную систему, это число 256 должно показаться вам очень знакомым. Число 256 равно 2 в 8-й степени или 8-битной глубине цвета. Это означает, что каждый из каналов RGB имеет 256 оттенков, поэтому всего в этой 8-битной системе RGB имеется 256x256x256 или 16 777 216 цветов.

8-битная цветовая система способна воспроизводить более 16 миллионов цветов. Это может выглядеть огромным, но по сравнению с 10-битным это на самом деле ничто. В 10-битной системе вы можете воспроизвести 1024 x 1024 x 1024 = 1 073 741 824 цвета, что в 64 раза больше, чем в 8-битной системе. Что еще более шокирует, так это то, что 12-битная система способна воспроизводить колоссальные 4096 x 4096 x 4096 = 68 719 476 736 цветов! В результате увеличение глубины цвета позволит вам лучше представить свои цвета.

Что такое выборка цветности и числа 4:4:4, 4:2:2 и 4:2:0?

Мы часто видим числа 4:4:4, 4:2:2 и 4:2:0 на записывающих устройствах, и они известны как субдискретизация цветности. Вы когда-нибудь задумывались, как субдискретизация цветности влияет на цвета изображения? И что именно означают эти числа 4:4:4, 4:2:2 и 4:2:0?

Прежде чем мы углубимся в субдискретизацию цветности, давайте сначала поговорим о пикселях изображения. Пиксель изображения определяется компонентами яркости и цветности. Без компонентов цветности яркость каждого пикселя создает представление изображения в оттенках серого. Кроме того, исследования показывают, что человеческие глаза более чувствительны к свету или яркости, чем к цветам.

YCbCr — это семейство цветовых пространств, используемых как часть конвейера цветных изображений в видеосистемах и системах цифровой фотографии.

Y относится к яркости пикселя и разделяет 1/3 количества сигнала. Сигнал яркости всегда сохраняется без сжатия. Cb и Cr — это два сигнала цветности, которые делят 2/3 количества сигнала. Сигналы цветности могут быть сжаты для уменьшения количества загружаемых данных.

Возьмем для примера 4:4:4. Первые 4 представляют собой количество пикселей, которые мы подвергаем субдискретизации. Вторые 4 означают, что 4 цвета дают в первой строке выборки цветности, а третьи 4, опять же, означают, что 4 цвета дают во второй строке выборки цветности. С технической точки зрения, 4:4:4 означает, что каждый пиксель имеет свое собственное значение цвета, которое включает в себя всю информацию о цветности, поэтому это не субдискретизация цветности. Теперь давайте посмотрим на 4:2:2. Вторые 2 означают две субдискретизации цветности в первой строке. А третья 2 означает тоже два подвыборки цветности во втором ряду. Таким образом, изображение 4:2:2 сохраняет только половину выборок цветности, что и изображение 4:4:4.

Что касается 4:2:0, это указывает на две подвыборки цветности в первой строке и отсутствие подвыборки цветности во второй строке, поэтому пиксели во второй строке копируют то же значение цветности, что и в первой строке. В результате изображение 4:2:0 сохраняет только четверть цветовой подвыборки по сравнению с изображением 4:4:4.

 

Почему видеокамера вещательного уровня такая мощная?

Пиксели представляют собой очень маленькие цветные точки, поэтому очень сложно обнаружить заметную визуальную разницу в том, записано ли видео в формате 4:4:4, 4:2:2 или 4:2:0. Однако 4:4:4 может записывать больше информации о цвете, чем 4:2:2 и 4:2:0, поэтому модель субдискретизации цветности 4:4:4 по-прежнему имеет преимущества перед 4:2:0 и 4:2. :2 с точки зрения качества цвета.

В большинстве имеющихся на рынке цифровых зеркальных и беззеркальных камер для сжатия видеофайлов используется модель субдискретизации цветности 4:2:0. Несмотря на то, что вы можете получить хорошее качество изображения из видео 4:2:0, вы все равно можете столкнуться с проблемами при выполнении хроматического кеинга или постредактирования из-за низкого разрешения для информации о цветности. По сравнению с изображениями 4:4:4 будет сложнее и труднее добиться чистого результата хромакея с видео 4:2:0. Вот почему профессиональные видеопроизводители по-прежнему предпочитают работать с видео формата 4:4:4 или 4:2:2, которое содержит больше информации о цветности, что облегчает постредактирование, только финальное видео сжимается в формате 4:2:0 для сохранения размера. файла. Эта производственная процедура похожа на то, что профессиональный фотограф всегда снимает фотографии с файлами RAW, а затем выводит изображения после редактирования в формате JPG для последующих приложений.

Зная теорию субдискретизации цветности, зрители уже должны знать, почему только профессиональное видеооборудование вещательного уровня способно воспроизводить изображение очень высокого качества и почему оно дороже потребительских цифровых камер и мобильных телефонов. Возьмем в качестве примера видеокамеру со сменными объективами BC-100 компании Datavideo. BC-100 — это видеокамера вещательного уровня, предназначенная для виртуальной студии. Камера оснащена 12-битным датчиком обработки изображений, способным захватывать огромное количество информации о цвете и отображать мельчайшие цветовые различия. Насыщенные цвета и четкое качество изображения нужны не только для визуального удовольствия, но и для получения четких и чистых объектов на фоне с помощью хромакея. С помощью продвинутой техники вы можете легко выполнить цветовой ключ сложных объектов, таких как стекло или волосы, представляя мельчайшие детали в сочетании с виртуальным фоном. Кроме того, технология расширенного динамического диапазона (HDR) позволяет видеокамере записывать детали ярких и темных частей изображения в условиях высокой контрастности, делая изображения более реальными для человеческого глаза.

 

Что такое битовая глубина? Как это влияет на мое видео?

Просматривая характеристики записи видео для камеры, вы, возможно, заметили термин «глубина цвета» или «глубина цвета» с такими значениями, как «8 бит», «10 бит» или «12 бит». Что это значит и как это влияет на ваши файлы? Читай дальше что бы узнать.

В этой статье:

     

    Знакомство с битами: что такое битовая глубина?

    Давайте начнем с нескольких основных понятий, которые следует запомнить:
    — Цифровые данные, включая цифровые фотографии и видео, хранятся в виде двоичного кода
    . — Наименьшая возможная единица данных называется «бит». 1-битные данные состоят только из одной цифры: либо «0», либо «1».
    — Сложная информация легче обрабатывается, когда она состоит из частей (назовем их «блоками обработки»), состоящих из нескольких битов.
    Количество битов в каждой единице обрабатываемых данных называется битовой глубиной. Чем больше битов в этой единице, тем больше информации она содержит.

     

    Как это относится к видео?

    Битовая глубина
    Двоичные числа
    Количество возможных комбинаций
    Количество цветов на канал
    Цветов на пиксель (3 канала RGB)
    Бит на пиксель (3 канала RGB)
    1 бит
    0/1 2 2 8
    3-битный
    2-битный
    01. 00.10.11 2 2 = 4 4 64
    6-битный
    4-битный
    0000/0001/0010/0011~
    1110/1111
    2 4 = 16 16 4 096
    12-битный
    8-битный
    00000001/00000010~
    11111110/11111111
    2 8 = 256 256 16 777 216
    24-битный
    10-битный
    0000000000~
    1111111111
    2 10 = 1024 1024 1 073 741 824
    30-битный
    12-битный
    000000000000~
    111111111111
    2 12 = 4096 4096 68 719 476 736
    36-битный
    14 бит
    00000000000000~
    11111111111111
    2 14 = 16 384 16 384 4 398 046 511 104
    42-разрядный
    16-битный
    0000000000000000~
    1111111111111111
    2 16 = 65 536 65 536 281 474 976 710 656
    48-битный

    В цифровых изображениях каждый пиксель цвета создается различной комбинацией красного, зеленого и синего (RGB) сигналов. При обработке изображений и видео красный, зеленый и синий цвета называются «цветовыми каналами». Когда мы говорим о битовой глубине в этом контексте, мы обычно имеем в виду количество битов, используемых для записи информации из каждого цветового канала («бит на канал»). Поскольку он включает информацию о цвете, его также называют «глубиной цвета».


    Как глубина цвета влияет на цветопередачу?

    Каждая возможная комбинация 0 и 1 соответствует другому отображаемому цвету. 8-битная битовая глубина содержит в общей сложности восемь нулей и единиц, что означает, что до 2 8 = 256 комбинаций (цветов) могут быть записаны/отображены на канал. Поскольку каждый пиксель объединяет цвета из трех каналов, это означает, что может отображаться целых 2 8×3 = около 16,77 миллионов различных цветов.

    8 бит на канал означает, что можно записать/отобразить более 16 миллионов цветов. Также известная как «True Color», это стандартная глубина цвета, используемая в популярных форматах изображений, таких как JPEG, а также почти во всех современных потребительских устройствах отображения.

    Как показано на рисунке выше, более высокая разрядность означает больше тональных вариаций и более плавные переходы цветового градиента. Человеческий глаз может различать только около 10 миллионов различных цветов, поэтому разница между 10-битным и 12-битным цветом для нас неочевидна. Но мы можем видеть разницу между изображениями с 4-битным и 8-битным цветом.


    Знайте это: Биты на пиксель

    Иногда вы также можете увидеть глубину цвета, отображаемую в битах на пиксель (bpp), которая представляет собой общее количество битов для всех трех каналов. 8 бит на канал — это то же самое, что 24 бита на пиксель.

     

    Как глубина цвета влияет на передачу тонов?

    На качество видео (и фото) влияет множество факторов. Как мы видели выше, глубина цвета отражает количество цветов, которые может записать 1 пиксель. Цвета состоят из одних и тех же оттенков в разных тонах.

    Когда речь идет о цифровых фотографиях и видео, 8-битная, 10-битная и 12-битная глубина цвета различаются в зависимости от того, насколько точно свет, захваченный датчиком изображения, различается при записи. 8-битный цвет различает 256 различных тонов, 10-битный цвет различает 1024 тона, а 12-битный цвет различает 4096 тонов.

    Например, давайте посмотрим на изображения заката ниже. Изображение, записанное с большей битовой глубиной, имеет более плавный градиент и больше ярких деталей.

    JPEG / 8-бит / sRGB

    HDR PQ HEIF / 10-бит / BT.2020*


    Узнайте больше о HDR PQ HEIF в:
    Преодолев пределы JPEGHEIF: HDR PQ

    Если вы собираетесь проводить цветокоррекцию изображений, запись в режиме Canon Log поможет сохранить больше тональных деталей. См.:
    6 вещей о кинокамерах, которые должны знать серьезные создатели видео

     

    Как выглядит процесс обработки данных?

    Свет, принимаемый пикселями датчика изображения, преобразуется в (аналоговые) сигналы в зависимости от их интенсивности. Эти аналоговые сигналы затем преобразуются в цифровые сигналы аналого-цифровым преобразователем. На камерах с процессором изображений DIGIC III или новее неподвижные изображения преобразуются, а затем внутренне обрабатываются с глубиной цвета 14 бит на канал (12 бит на канал в некоторых режимах съемки), а видео — на 12 бит на канал. После внутренней обработки битовая глубина данных корректируется в соответствии с выбранным форматом записи.

    Хотите знать, чем занимается DIGIC? См.:
    Объяснение технологии Canon: Что такое DIGIC?

     

    Должен ли я записывать с максимальной доступной битовой глубиной?


    Преимущества более высокой разрядности

    Большинство бытовых телевизоров и мониторов поддерживают цвет до 8 бит. HDR-телевизоры и мониторы могут отображать 10-битный цвет. На самом деле, большинство конечного пользовательского аудиовизуального оборудования поддерживает цвет до 8 бит, поэтому записи в 8-битном формате обычно должно быть достаточно.

    Однако более высокая битовая глубина записи означает больше исходной информации, с которой вы можете работать, что помогает сохранить целостность файлов изображений даже при тяжелой постобработке, такой как цветокоррекция или смешивание отснятого материала. Как?

    Допустим, вы пытаетесь выполнить цветокоррекцию или цветокоррекцию 8-битного видеоряда. Каждая корректировка означает, что ваше программное обеспечение должно преобразовать исходные цвета в новые. Однако точного «нового» необходимого цвета может не быть в меньшей 8-битной цветовой палитре, поэтому программное обеспечение сопоставляет его с чем-то другим, менее точным. Это нарушает переход и вызывает видимые полосы и другие артефакты.

    Для сравнения, большая цветовая палитра в 10-битном или 12-битном формате записи обеспечивает более точное отображение, сохраняя плавность переходов и неизменное качество изображения.


    Разрядность различных режимов видеозаписи на камерах EOS

    Формат
    Гамма
    Глубина предложения
    Количество цветов (приблизительное)
    СЫРЬЕ
    12-битный
    68,7 млрд
    XF-АВК
    Canon-Log/HDR PQ
    10-битный
    1 миллиард
    Стандарт
    8-битный
    16,77 млн ​​
    МР4
    Canon-Log/HDR PQ
    10-битный
    1 миллиард
    Стандарт
    8-битный
    16,77 млн ​​


    Но помните: чем выше разрядность, тем больше объем данных

    Чем выше разрядность, тем больше генерируется данных, что влияет на обработку и размер файла. Учитывайте это при выборе разрядности записи.


    Узнайте о других характеристиках и режимах, влияющих на качество видео, в:
    Часто задаваемые вопросы о видеосъемке: что означают 4:2:2 и 4:2:0?
    Часто задаваемые вопросы по видеосъемке: что такое IPB/Long GOP и ALL-I/Intra-frame?

    Что такое 8K, 4K и Full HD? Это действительно нормально, если вы не записываете в 4K? Узнайте по телефону:
    Часто задаваемые вопросы о видеосъемке: что такое 8K, 4K и Full HD? Как мне их использовать?

    Связанные статьи

    • 2021-12-07 Продукция

      6 фактов о кинокамерах, на которые не обращают внимания серьезные создатели видео…

    • 25.

      Глубина цвета 8 бит: О глубине цвета: 8 или 16 бит?

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Пролистать наверх