Из чего состоит камера: Как устроена камера смартфона? Просто о сложном

Содержание

В чем «фишка» камер смартфонов? Разбор

Интересно наблюдать какой путь проделала мобильная фотография за последние лет десять. Я сравнил фотографию, которую я сделал в 2008 году с фотографией на актуальный смартфон. И WOW. Как небольшие по размеру камеры телефонов, а затем смартфонов достигли такого уровня качества?

Сегодня попробуем разобраться какой путь прошла мобильная фотография за эти годы…

Краткая история

Главной предпосылкой к появлению камер в телефонах стало изобретение и распространение цифровых камер. Вряд-ли кто-нибудь стал бы помещать в телефон фотоплёнку, хотя выглядело бы интересно. Первая цифровая камера появилась ещё в 1975 году. Она имела разрешение всего в одну сотую мегапикселя, была чёрно-белой, а фотографии записывались на кассету. Несмотря на это, сама технология получения снимка у этой камеры была такая же, как и на современных фотоаппаратах и, отчасти, телефонах.

Любая любая цифровая камера, состоит из двух основных частей: сенсора и системы линз. Сенсор улавливает свет, который на нём фокусирует система линз, и затем из полученного света получается картинка, это если вкратце.

Собственно, камера в телефоне это и есть цифровая камера, просто уменьшенная до таких размеров, чтобы помещаться в вашем смартфоне, при этом ещё и в количестве нескольких штук. Но есть существенное отличие — это размер сенсора. Почему это важно? Качество снимка зависит от количества информации, поступающей на сенсор. А эта информация — свет, попадающий на матрицу. Поэтому меньше сенсор, тем меньше света, тем в итоге хуже фото.

Но как же камерам смартфонов удается выдавать сопоставимое качество? Давайте разберемся. Для этого, начать стоит с того, как вообще устроена камера смартфона.

Сенсор камеры. Матрица.
Вы находитесь здесь…

Сенсор камеры – самая важная её часть. Главный элемент сенсора – светочувствительная матрица. Она состоит из миллионов ячеек, которые улавливают свет. «Мегапиксели» в камере – это как раз количество таких ячеек. Например, 64 мегапикселя означают, что матрица состоит из 64 миллионов светочувствительных ячеек. Когда вы открываете приложение камеры на смартфоне, все эти ячейки начинают собирать в себя фотоны света и по их количеству на каждой ячейке и формируется картинка. Каким образом? Ответ на этот вопрос зависит от типа матрицы, их всего два CCD и CMOS-матрицы.

Разница заключается в том, что в CCD-матрицах для преобразования света в напряжение и из него в данные используется отдельная схема-преобразователь. При воздействии света на ячейку, в ней образуются электроны, и они поочерёдно поступают в преобразователь, который «превращает» электроны в выходное напряжение, такие матрицы были придуманы первыми, а сейчас используются только в очень дорогих камерах из-за своей дороговизны. В CMOS-матрицах все необходимые преобразования происходят в самой ячейке, то есть на выходе ячейка сразу выдаёт напряжение, без необходимости во внешних схемах, такие матрицы дешевле, быстрее и меньше, поэтому и получили гораздо более широкое распространение.

Хорошо, но как из выходного напряжения получается картинка? Напряжение – пропорционально тому, сколько света захватила каждая ячейка, то есть яркость каждого пикселя. Но только яркость, сами по себе матрицы умеют формировать только чёрно-белое изображение.

Фильтр Байера

Для появления в фотографиях цвета над каждой ячейкой помещают цветной фильтр, который улавливает определённый цвет: красный, синий или зелёный. Совокупность таких фильтров формирует над матрицей ещё один слой – матричный светофильтр. Самый известный – фильтр Байера, ещё его называют RGGB. Этот фильтр состоит из 25 % красных элементов, 25 % синих и 50 % зелёных элементов. Такой дисбаланс цветов вызван тем, что человеческий глаз более чувствителен к зелёному цвету, чем к красному и синему вместе взятым. То есть получается, что каждый пиксель улавливает лишь один цвет? И из этого же следует, что два остальных цвета фильтром отсекается, значит сохраняется лишь одна треть от всей цветовой информации. «Полноцветным» является блок 2 на 2 пикселя, в таком блоке один красный пиксель, один синий пиксель и два зеленых пикселя. Тем не менее, этого хватает для получения цветной картинки, для этого используются значения из соседних ячеек.

Но интересно, что RGGB это не единственный тип светофильтров, хотя и наиболее распространённый. Помимо него существуют уже почти неиспользуемый CYYM, в котором на каждый блок один бирюзовый, два жёлтых и один пурпурный, а также RYYB, где зелёный цвет заменили на жёлтый, он появился в 2019 году. Альтернативные светофильтры не стали стандартом индустрии, хотя и используются некоторыми производителями. Это обусловлено тем, что все существующие алгоритмы и технологии работы с изображениями рассчитаны на зелёный, синий и красный цвета, а в случае использования других цветовых компонентов требуются более сложные алгоритмы демозаики. С другой стороны, жёлтые фильтры позволяют матрице захватывать больше света, а значит и в условиях недостаточного освещения фотографии должны получаться лучше.

Хотя, главное ограничение в этом плане – отнюдь не светофильтр, а размер пикселя. В камерах смартфонов зачастую не превышает полутора микрометров, он физически не может уловить такое количество света, как «большие» камеры с пятикратно большими пикселями. Для того, чтобы это компенсировать была придумана технология Quad Bayer. В ней при значительном увеличении разрешения камер, например, до 48 мегапикселей размер фильтра Байера остаётся как при двенадцати мегапикселях, то есть цветофильтр покрывает сразу 4 пикселя, блок 2×2 пикселя становится одноцветным, а разрешение фотографий не увеличивают. Такая технология используется во всех актуальных смартфонах vivo, в том числе и в vivo V25 Pro.

Это позволяет улучшить динамический диапазон фотографий. Каким образом? Вообще, широкого динамического диапазона на фотографиях можно достигнуть двумя способами: большим размером сенсора или увеличением выдержки. Первый вариант не подходит из-за небольшого размера камеры смартфона, а вот второй может и получиться, но только для совсем небольшого отрезка времени, чтобы не смазать кадр при съёмке с рук. Трюк заключается в том, что одновременно половина фотодиодов под одним фильтром работает с короткой выдержкой, а вторая половина — с длинной. Получается, под каждым цветным фильтром два диода собирают всю информацию на ярких участках, а два других — на темных, и при этом общее время выдержки увеличивается незначительно.

С другой стороны, пиксели становятся ещё меньше, что приводит возникновению шумов и различных дефектов, которые необходимо исправлять при постобработке, то есть возрастают требования к вычислительной мощности смартфона.

Как раз отличной камерой, и мощным железом может похвастаться смартфон vivo V25 Pro. Это флагман новой серии V25, которая недавно вышла в продажу в Россию. vivo давно присутствует на рынке, и мы с вами прекрасно знакомы с этим брендом — компания занимает лидирующие позиции в создании инновационных продуктов, в частности, специалисты vivo уделяют большое внимание именно развитию фото- и видеосъемки в смартфонах.

Так, например, первым в мире смартфоном с фронтальной светодиодной вспышкой полного спектра был vivo X shot, представленный компанией в 2014 году.

vivo X7, вышедший в 2017 году, был оснащен передовой технологией мягкого света, разработанной компанией (имитируя свет на съемочной площадке, технология способна придать сияющий цвет лица людям, делающим селфи). Также в 2016 году в сериях vivo X9 и X9s внедрили режим двойной камеры для фронтальной фотосъемки.

Но о компании говорить можно долго, так что давайте вернемся и посмотрим, что нам предлагает новинка V25 Серии — vivo V25 Pro. Смотрите сами, тут крутая 64 мегапиксельная камера, к тому же с гибридной стабилизацией, комбинация оптической стабилизации и электронной сделает снимки с рук максимально чёткими.

 

Фотографии можно делать как в разрешении 16 мегапикселей, так и задействовать полное разрешение камеры для получения очень детальных снимков при дневном освещении.

Любителям портретной съёмки понравится качественное боке, да ещё и с возможностью менять после съемки блики, можно выбрать из нескольких вариантов, таких как сердца, бабочки или “вишня в цвету”, а для создания динамики на снимках можно использовать эффект размытия в движении.

А тем, кто считает ночь своей стихией пригодится продвинутый ночной режим, который при любом освещении поможет создать яркий снимок, вот например такой или вот такой.
Помимо продвинутых основных камер, в смартфоне установлена 32 мегапиксельная фронтальная камера с автофокусом по глазам, что позволит всегда делать чёткими не только селфи-фото, но и селфи-видео, оцените качество картинки и заодно звука.

Кстати, насчёт видео, гибридная стабилизация сделает кадр плавным даже при сильной тряске.

Все эти продвинутые алгоритмы съёмки работают быстро благодаря новому производительному восьмиядерному чипу MediaTek Dimensity 1300 и 12 гигабайтам оперативной памяти с возможностью расширения ещё на 8 Гб. А чтобы избежать перегрева и троттлинга в смартфоне используется современная система охлаждения. Кроме того, в смартфоне установлен большой аккумулятор ёмкостью 4830 мАч, который с помощью 66-ваттной быстрой зарядки можно зарядить до 42% всего за 15 минут.

Сильной стороной vivo V25 Pro является не только “железо”, но и дизайн, фотохромное антибликовое стекло с бархатистой поверхностью на задней панели благодаря слою кристаллов меняет свой цвет под разными углами, от небесно-голубого до тёмно-синего, это точно подчеркнёт чувство стиля владельца смартфона. Кстати, для первых покупателей V25 Pro беспроводные наушники в подарок.

Стабилизация

Есть ещё один способ улучшить качество снимков при недостаточной освещённости – увеличить выдержку. Это время, за которое камера фиксирует изображение. Тут всё просто: чем больше выдержка, тем больше света попадёт на матрицу. Но для этого камера должна быть абсолютно неподвижна, иначе изображение получится смазанным. При съёмке с рук добиться такого едва ли возможно, поэтому в смартфонах средневысокого ценового сегмента используется оптическая стабилизация изображения (OIS). Работает она так, гироскоп и акселерометр постоянно определяют сдвиги камеры в пространстве и электрические приводы компенсируют эти движения, стабилизируя модуль камеры.

Кстати, первым смартфоном в индустрии с пятитиосевой gimbal стабилизацией стал vivo X50 Pro. Созданный по образцу полноразмерного профессионального стабилизатора, встроенный модуль в X50 Pro обеспечивает повышенную устойчивость основной камеры, двигаясь в направлении, противоположном тряске.

Эта система также расширяет угол поворота и зону защиты от сотрясений по сравнению с оптической стабилизацией (OIS), что приводит к сверхчетким изображениям. Но так как OIS это всё-таки механизм, ещё и небольшого размера, стоит производителям смартфонов такое удовольствие недёшево, поэтому в смартфонах невысокого ценового класса оптическую стабилизацию не встретишь. В этом сегменте используется электронная стабилизация (или EIS), при ней все движения камеры компенсируются процессором при обработке изображения. Некоторые смартфоны, например наш vivo, могут использовать и оптическую и электронную стабилизацию одновременно.

Размер сенсора

А почему бы не сделать смартфон с размером сенсора, как на фотокамерах? Раз уж все остальные методы не решают проблемы со съёмкой при нехватке света и низкой выдержке, так ещё бы и подрос бы динамический диапазон за счёт большего размера пикселей. Дело тут в том, что внутри смартфона очень мало места. И чтобы в него поместился большой модуль камеры, необходимо либо уменьшать размеры остальных компонентов, а уменьшить зачастую можно только аккумулятор, либо значительно увеличивать толщину и вес смартфона. А главное — для покрытия большой матрицы нужна выпирающая оптика.

Второй подход используется чаще, но такие смартфоны получаются совсем нишевыми, далеко не все готовы ради хорошей камеры носить с собой тяжёлый смартфон с огромной выпирающей камерой. Поэтому оптимизации нужно искать где-то ещё, например, в линзах.

Линзы

А ведь любой, даже самый продвинутый сенсор будет бесполезен без системы линз, и именно она занимает больше всего места в модуле камеры смартфона. Неужели нельзя обойтись вообще без линз? К сожалению, нет. В любом модуле камеры есть три типа линз:

  • Собирающая
  • Фокусирующая
  • Корректирующая

Самая основная, это собирающая – чтобы маленький сенсор «захватил» большую сцену, её необходимо «сжать» до размеров этого самого сенсора. Для этого нужна выпуклая собирающая линза, она собирает пучок световых лучей в одну точку. В целом, для получения снимка достаточно всего одной такой линзы, но качество такого снимка будет невысоким из-за расфокуса и искажений, или аберраций.

То есть ещё необходима фокусирующая линза, в отличие от других линз, она может перемещаться внутри объектива, чтобы достичь необходимой резкости изображения. Для определения нужного положения фокусирующей линзы используются различные технологии автофокуса, на эту тему у нас было отдельное видео на канале, поэтому не будем на этом останавливаться.

Для устранения искажений применяются применяются различные корректирующие линзы. Например, для уменьшения эффекта хроматической аберрации. Он возникает из-за того, что у каждого цвета своя длина волны и поэтому некоторые цвета могут быть в расфокусе, так как они не сходятся в одной точке. Из-за этого снижается чёткость изображения и появляются цветные контуры. Для борьбы с этим эффектом в каждой системе линз есть ахроматическая линза, которая соединяет цветовые лучи в одной точке.

В «больших» фотоаппаратах все эти линзы представляют собой отдельные стеклянные элементы, которые можно заметить или подстроить под себя. А в смартфонах для экономии места линза, по сути, одна, просто склеенная из нескольких пластиковых элементов, обычно от 5 до 7. Выбор пластика в качестве материала обусловлен тем, что при таких маленьких размерах, с пластиком работать проще, а ещё пластиковая линза не разобьётся от падения.

Фокусное расстояние

Ещё именно линзы определяют фокусное расстояние, это расстояние от точки схождения лучей внутри объектива до сенсора камеры, если несколько упростить, то это на каком расстоянии от линз находится сенсор камеры. Фокусное расстояние определяет угол обзора камеры, то есть насколько «широко» камера видит сцену. Чем меньше фокусное расстояние, тем больше угол обзора, но вместе с увеличением угла обзора возникает бочкообразная дисторсия, также называемая «рыбий глаз», она возникает из-за того, что линзами захватывается много информации, но поместить её необходимо на небольшой сенсор камеры. А объективы, то есть системы линз, с большим фокусным расстояниями используются для получения зума, так как из-за малого угла обзора создаётся иллюзия, что изображение приближено.

Двойные-тройные камеры

На фотоаппарате в плане объективов всё просто, под каждую задачу меняешь объектив и всё, одна камера становится максимально универсальной. На смартфоне такой вариант невозможен в силу того, что линзы невзаимозаменяемые, из-за своего малого размера и высокой плотности компонентов внутри смартфона. Поэтому для расширения функционала камеры начали… добавлять новые камеры. Вообще, эта идея не новая.

Первые смартфоны с двумя камерами появились чуть больше 10-ти лет назад, но там две камеры использовались для создания 3D-эффекта. А вот использование двух разных модулей под разные задачи стало трендом лишь в последние 5 лет.

Кстати, двойная камера может быть не только тыльной, но и фронтальной. Например, смартфон vivo V5 plus был первым в мире смартфоном с двойной фронтальной камерой, а через пару лет vivo V17 Pro стал первым смартфоном с двойной “выдвигающейся” селфи-камерой.

Сейчас дополнительные камеры устанавливают практически все производители в смартфоны всех ценовых сегментов.

Например, в уже упомянутом vivo V25 pro три модуля камеры:

  • Основной объектив, со средним углом обзора и самой высокой светочувствительностью.
  • Сверхширокоугольный объектив, он же «сверхширик», малое фокусное расстояние даёт ему большой угол обзора. Такой камерой можно захватывать сцену максимально широко и получать интересные снимки, например вот такой или такой.
  • И макрообъектив, также может нести функцию замера глубины, нужен либо для создания макроснимков, либо для определения и отделения фона при портретной съёмке.

Помимо этих модулей, в смартфонах также часто устанавливают телеобъектив. Он же «телевик», у него фокусное расстояние кратно меньше таковому у основного объектива, эта разница как раз и является зум-фактором. Например, если у основного объектива фокусное расстояние 24 мм, а у телевика 77 мм, то мы, округляя, получаем трёхкратный оптический зум.

С недавнего времени в смартфонах появились так называемые перископные телеобъективы, они дают больший оптический зум, по сравнению с обычным телеобъективом, из-за большего фокусного расстояния, вплоть до 100 мм, но в чём между ними разница? Фокусное расстояние – это всё-таки физическая величина, а значит, что в смартфоне должно быть место под это расстояние, а ещё под линзы и сенсор камеры. Поэтому, когда увеличение фокусного расстояния «упёрлось» в толщину смартфона, инженеры придумали повернуть камеру параллельно корпусу смартфона, уместить таким образом всю оптику, а затем зеркалом «вернуть» обзор камеры в нужную плоскость. Первые смартфоны с перископными объективами появились в 2019-м году, и с тех пор, всё больше производителей перенимают эту технологию.

У vivo тоже есть смартфоны с таким объективом, например, vivo X70 Pro+, у которого помимо обычного телеобъектива с двухкратным увеличением, есть ещё и перископный объектив, дающий пятикратное приближение.

Но даже у самых продвинутых «вспомогательных» модулей камер есть большой недостаток, это невысокое качество съёмки при недостаточном освещении. Дело в том, таким модулям нужны дополнительные линзы для увеличения угла обзора, или для зума, и каждая линза уменьшает количество света, которое попадает на матрицу. Из-за этого светосила объектива становится меньше, а итоговая картинка темнее.

Заключение

Получается, что ключевое отличие мобильных камер от “больших” фотоаппаратов это значительное использование программных алгоритмов, они комбинируют снимки с разных объективов для создания портретного размытия, улучшают качество ночных снимков, и, что самое главное, дают возможность пользователю просто достать смартфон, открыть камеру и сделать снимок, без необходимости настройки параметров под каждую конкретную сцену. И именно алгоритмы будут улучшать качество съемки на смартфон, потому что вряд-ли нас ожидают существенные улучшение в оптике, или в сенсорах камер, их размер всё-таки существенно ограничен, и всё улучшение упирается в законы физики, а их пока никому обмануть не удалось.

А вот алгоритмы можно улучшать практически бесконечно, и нейросети прекрасно этому способствуют, такие дела.

Post Views: 2 921

Из чего состоит аналоговая и IP-камера?

IP-камера похожа на аналоговую камеру, но имеет дополнительные узлы в своем составе.

Таблица сравнения состава аналоговых и IP-камер
КомпонентАналоговая камераIP-камера
Светочувствительная матрица++
Объектив++
Оптический фильтрВозможенВозможен
Процессор обработки видеосигналаВозможен+
Блок компрессии
(сжатия) видеоизображения
+
МикрофонВозможенВозможен
Звуковой выходВозможен
ОЗУ+
Флэш-память+
Сетевой интерфейс+
Беспроводной интерфейсВозможен
Последовательные портыВозможен
Тревожные входы/ выходыВозможен
Детектор движения+
Источник питания++, в том числе питание
и передача данных по одному кабелю
ТермокожухПри установке на улицеПри установке на улице

В качестве светочувствительной матрицы используется полупроводниковая CCD или CMOS-матрица, преобразующая падающий свет в выходной электрический сигнал.

Объектив – это система линз, предназначенная для проецирования изображения объекта наблюдения на светочувствительный элемент камеры. Объектив является неотъемлемой частью камеры, поэтому от правильности его выбора и установки зависит качество видеоизображения.

Процессор обработки видеосигнала

предназначен для обработки сигнала, поступающего со светочувствительной матрицы, и преобразования его в цифровой вид. Процессор может улучшать качество изображения камеры.

Микрофон и звуковой выход. В аналоговой системе передача звука невозможна, разве что в случае прокладки соответствующего кабеля к цифровому видеорегистратору. Сетевая IP-камера решает эту проблему путем регистрации звука самой камерой, синхронизации его с видеосигналом и отправки его для прослушивания и/или записи по той же сети. Аудиосвязь может быть полностью двунаправленной, что позволяет собеседникам вести разговор через переговорные устройства. Такие звуковые устройства дешевы и легки в установке.

ОЗУ (оперативное запоминающее устройство – оперативная память) – служит для хранения временных данных. Многие IP-камеры имеют так называемый видеобуфер. Это часть ОЗУ, зарезервированная для записи и временного хранения видеокадров. Информация в видеобуфере обновляется циклически, то есть, новый кадр записывается вместо самого старого.

Флэш-память хранит редкоперезаписываемые данные. Например, настройки камер и прошивку, управляющую работой IP-камеры.

Сетевой интерфейс Ethernet служит для подключения IP-камеры к сети стандарта Ethernet 10/100 Мбит/с.

Беспроводной интерфейс служит для подключения IP-камеры к беспроводной сети Wi-Fi и позволяет осуществлять наблюдение там, где затруднено кабельное подключение или необходима полная мобильность.

Тревожные входы/выходы служат для подключения к веб-камере датчиков тревоги. При срабатывании одного из датчиков генерируется сигнал тревоги, в результате чего процессор веб-камеры компонует набор кадров, записанных в видеобуфер до, после и в момент поступления сигнала тревоги.

Этот набор кадров может отсылаться на заданный e-mail адрес или по FTP.

Каждая IP-видеокамера имеет свой собственный IP-адрес, встроенный процессор и встроенное программное обеспечение, что позволяет ей функционировать в качестве веб-сервера, FTP-сервера, FTP-клиента и клиента e-mail. Современные сетевые видеокамеры имеют также множество дополнительных привлекательных функций, таких как детектор движения, питание по PoE, настройки и коррекция видеоизображения, передача звука и т.д.


Как работают камеры | HowStuffWorks

Фотография, несомненно, является одним из самых важных изобретений в истории — она действительно изменила представление людей о мире. Теперь мы можем «видеть» всевозможные вещи, которые на самом деле находятся за много миль — и лет — от нас. Фотография позволяет запечатлеть моменты времени и сохранить их на долгие годы.

Базовая технология, которая делает все это возможным, довольно проста. Фотокамера состоит из трех основных элементов: оптического элемента (объектива), химического элемента (пленки) и механического элемента (сам корпус камеры). Как мы увидим, единственная хитрость в фотографии — это калибровка и комбинирование этих элементов таким образом, чтобы они записывали четкое, узнаваемое изображение.

Реклама

Есть много разных способов собрать все вместе. В этой статье мы рассмотрим ручную однообъективную зеркальную камеру (SLR) . Это камера, в которой фотограф видит точно такое же изображение, которое экспонируется на пленку, и может все настроить, поворачивая циферблаты и нажимая кнопки. Поскольку для съемки не требуется электричество, зеркальная фотокамера с ручным управлением прекрасно иллюстрирует основные процессы фотографии.

Оптический компонент камеры — объектив . В самом простом случае линза — это изогнутый кусок стекла или пластика. Его работа состоит в том, чтобы принимать лучи света, отражающиеся от объекта, и перенаправлять их так, чтобы они собирались вместе, чтобы сформировать реальное изображение — изображение, которое выглядит точно так же, как сцена перед объективом.

Но как это может сделать кусок стекла? Процесс на самом деле очень простой. Когда свет переходит из одной среды в другую, он меняет скорость. Свет распространяется быстрее через воздух, чем через стекло, поэтому линза замедляет его.

Когда световые волны входят в стекло под углом, одна часть волны достигает стекла раньше другой и начинает замедляться первой. Это что-то вроде толкания тележки с тротуара на траву под углом. Правое колесо первым касается травы и поэтому замедляется, пока левое колесо все еще находится на асфальте. Поскольку левое колесо кратковременно движется быстрее, чем правое, тележка для покупок поворачивает вправо, когда движется по траве.

«»

Воздействие на свет такое же — когда он входит в стекло под углом, он изгибается в одном направлении. Он снова изгибается, когда выходит из стекла, потому что части световой волны входят в воздух и ускоряются раньше других частей волны. В стандартной собирающей линзе или выпуклой линзе одна или обе стороны стекла выгнуты наружу. Это означает, что лучи света, проходящие через линзу, будут преломляться к центру линзы при входе. В двойной выпуклой линзе , такой как увеличительное стекло, свет будет преломляться как при выходе, так и при входе.

«»

Эффективно изменяет путь света от объекта. Источник света, скажем, свеча, излучает свет во всех направлениях. Все лучи света начинаются в одной и той же точке — пламени свечи — и затем постоянно расходятся. Собирающая линза собирает эти лучи и перенаправляет их так, чтобы все они снова сходились в одну точку. В точке, где лучи сходятся, получается реальное изображение свечи. В следующих двух разделах мы рассмотрим некоторые переменные, которые определяют, как формируется это реальное изображение.0003

Реклама

Содержание

  1. Камеры: Фокус
  2. Объективы камеры
  3. Камеры: записывающий свет
  4. Камеры: правильный свет
  5. Зеркальные камеры против «наведи и снимай»
  6. Самодельные камеры

htm»> Камеры: Фокус

Мы видели, что реальное изображение формируется светом, проходящим через выпуклую линзу. Природа этого реального изображения меняется в зависимости от того, как свет проходит через линзу. Этот световой путь зависит от двух основных факторов:

  • Угол входа светового луча в линзу
  • Структура линзы

Угол входа света изменяется, когда вы приближаете или удаляете объект от объектива. Вы можете увидеть это на диаграмме ниже. Лучи света от острия карандаша входят в линзу под более острым углом, когда карандаш находится ближе к линзе, и под более тупым углом, когда карандаш находится дальше. Но в целом линза искривляет световой луч только до определенной степени, независимо от того, как он входит. Следовательно, световые лучи, входящие под более острым углом, будут выходить под более тупым углом, и наоборот. Общий «угол изгиба» в любой конкретной точке линзы остается постоянным.

Реклама

Как видите, световые лучи из более близкой точки сходятся дальше от линзы, чем световые лучи из более удаленной точки. Другими словами, реальное изображение более близкого объекта формируется дальше от линзы, чем реальное изображение более удаленного объекта.

Вы можете наблюдать это явление с помощью простого эксперимента. Зажгите в темноте свечу и держите между ней и стеной увеличительное стекло. Вы увидите перевернутое изображение свечи на стене. Если реальное изображение свечи не падает прямо на стену, оно будет выглядеть несколько размытым. Лучи света из определенной точки в этой точке не совсем сходятся. Чтобы сфокусировать изображение, переместите увеличительное стекло ближе или дальше от свечи.

«»

Это то, что вы делаете, когда поворачиваете объектив камеры, чтобы сфокусировать его — вы перемещаете его ближе или дальше от поверхности пленки. Когда вы перемещаете объектив, вы можете выровнять сфокусированное реальное изображение объекта так, чтобы оно попадало прямо на поверхность пленки.

Теперь вы знаете, что в любой точке линза преломляет световые лучи в определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы .0010 .

Реклама

Объективы камеры

В предыдущем разделе мы видели, что в любой точке линза преломляет световые лучи до определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы.

Линза с более круглой формой (центр, который выступает дальше) будет иметь более острый угол изгиба. По сути, изгиб линзы увеличивает расстояние между различными точками на линзе. Это увеличивает время, в течение которого одна часть световой волны движется быстрее, чем другая часть, поэтому свет делает более резкий поворот.

Реклама

Увеличение угла изгиба дает очевидный эффект. Лучи света из определенной точки сойдутся в точке, расположенной ближе к линзе. В линзе с более плоской формой лучи света не будут поворачиваться так резко. Следовательно, световые лучи будут сходиться дальше от линзы. Иными словами, сфокусированное реальное изображение формируется дальше от линзы, когда линза имеет более плоскую поверхность.

Увеличение расстояния между объективом и реальным изображением фактически увеличивает общий размер реального изображения. Если подумать, в этом есть смысл. Подумайте о проекторе: по мере того, как вы отдаляете проектор от экрана, изображение становится больше. Проще говоря, световые лучи продолжают расходиться, приближаясь к экрану.

В камере происходит то же самое. По мере увеличения расстояния между объективом и реальным изображением световые лучи рассеиваются больше, формируя реальное изображение большего размера. Но размер пленки остается постоянным. Когда вы прикрепляете очень плоский объектив, он проецирует большое реальное изображение, но пленка экспонируется только в его средней части. По сути, объектив фокусируется на середине кадра, увеличивая небольшую часть сцены перед вами. Более круглая линза дает меньшее реальное изображение, поэтому поверхность пленки видит гораздо более широкую область сцены (при уменьшенном увеличении).

Профессиональные камеры позволяют прикреплять различные объективы, чтобы вы могли видеть сцену с разным увеличением. Сила увеличения объектива описывается его фокусным расстоянием . В камерах фокусное расстояние определяется как расстояние между объективом и реальным изображением объекта на дальнем расстоянии (например, луны). Более высокое число фокусного расстояния указывает на большее увеличение изображения.

Разные объективы подходят для разных ситуаций. Если вы фотографируете горный хребет, вы можете использовать телеобъектив , объектив с особенно большим фокусным расстоянием. Этот объектив позволяет сосредоточиться на определенных элементах на расстоянии, поэтому вы можете создавать более плотные композиции. Если вы снимаете портрет крупным планом, вы можете использовать широкоугольный объектив . Этот объектив имеет гораздо более короткое фокусное расстояние, поэтому он уменьшает сцену перед вами. Пленка освещает все лицо, даже если объект находится всего в футе от камеры. Стандартный 50-миллиметровый объектив камеры не увеличивает и не уменьшает изображение, что делает его идеальным для съемки объектов, которые не находятся особенно близко или далеко.

Реклама

Камеры: записывающий свет

Химическим компонентом традиционной камеры является пленка . По существу, когда вы подвергаете пленку реальному изображению , она создает химическую запись картины света.

Он делает это с помощью набора крошечных светочувствительных зерен, распределенных в виде химической суспензии на полоске пластика. Под воздействием света зерна вступают в химическую реакцию.

Реклама

Когда рулон закончен, пленка проявляется — она ​​подвергается воздействию других химикатов, которые вступают в реакцию со светочувствительными зернами. В черно-белой пленке химические вещества-проявители затемняют зерна, подвергшиеся воздействию света. Это создает негатив, где более светлые области кажутся темнее, а более темные области кажутся светлее, который затем преобразуется в позитив при печати.

Цветная пленка состоит из трех различных слоев светочувствительных материалов, которые, в свою очередь, реагируют на красный, зеленый и синий цвета. Когда пленка проявляется, эти слои подвергаются воздействию химических веществ, которые окрашивают слои пленки. Когда вы накладываете информацию о цвете со всех трех слоев, вы получаете полноцветный негатив.

Подробное описание всего этого процесса см. в статье «Как работает фотопленка».

До сих пор мы рассматривали основную идею фотографии: вы создаете реальное изображение с помощью собирающей линзы и записываете световой узор этого реального изображения на слой светочувствительного материала. Концептуально это все, что нужно для создания фотографии. Но чтобы получить четкое изображение, вы должны тщательно контролировать, как все складывается.

Очевидно, что если бы вы положили на землю кусок пленки и сфокусировали на нем реальное изображение с помощью собирающей линзы, вы не получили бы никакого пригодного для использования изображения. На открытом воздухе каждое зерно в пленке будет полностью освещено светом. А без контрастных неэкспонированных участков нет картинки.

Чтобы сделать снимок, вы должны держать пленку в полной темноте, пока не придет время делать снимок. Затем, когда вы хотите записать изображение, вы пропускаете немного света. На самом базовом уровне это все, что представляет собой корпус камеры — герметичная коробка с затвором , который открывается и закрывается между объективом и пленкой. . На самом деле, термин камера сокращен от camera obscura , буквально «темная комната» на латыни.

Чтобы изображение получилось правильным, необходимо точно контролировать количество света, попадающего на пленку. Если вы пропустите слишком много света, слишком много зерен среагирует, и изображение будет размытым. Если вы не позволите достаточному количеству света попасть на пленку, будет реагировать слишком мало зерен, и изображение будет слишком темным. В следующем разделе мы рассмотрим различные механизмы камеры, позволяющие регулировать экспозицию.

Реклама

Камеры: правильный свет

В предыдущем разделе мы видели, что вам необходимо тщательно контролировать экспозицию пленки, иначе изображение получится слишком темным или слишком ярким. Так как же настроить этот уровень экспозиции? Вы должны учитывать два основных фактора:

  • Сколько света проходит через объектив
  • Как долго экспонируется пленка

Чтобы увеличить или уменьшить количество света, проходящего через объектив, вы должны изменить размер апертура — отверстие объектива. Это работа ирисовой диафрагмы , ряда перекрывающихся металлических пластин, которые могут складываться друг на друга или расширяться. По сути, этот механизм работает так же, как радужная оболочка вашего глаза — она открывается или закрывается по кругу, уменьшая или увеличивая диаметр хрусталика. Когда объектив меньше, он улавливает меньше света, а когда он больше, он улавливает больше света.

Реклама

Продолжительность воздействия определяется скорость затвора . В большинстве зеркальных камер используется затвор в фокальной плоскости . Этот механизм очень прост — он в основном состоит из двух «занавесок» между объективом и пленкой. Перед тем, как сделать снимок, первая шторка закрывается, чтобы на пленку не попадал свет. Когда вы делаете снимок, эта занавеска открывается. Через определенное время вторая шторка опускается с другой стороны, чтобы остановить экспозицию.

Когда вы нажимаете кнопку спуска затвора камеры, открывается первая шторка, обнажая пленку. Через определенное время второй затвор закрывается, завершая экспозицию. Временная задержка регулируется ручкой выдержки камеры.

Это простое действие управляется сложной массой шестеренок, переключателей и пружин, как в часах. Когда вы нажимаете кнопку спуска затвора , она отпускает рычаг, который приводит в движение несколько шестеренок. Вы можете подтянуть или ослабить некоторые пружины, повернув ручку выдержки. Это регулирует зубчатый механизм, увеличивая или уменьшая задержку между открытием первой шторы и закрытием второй шторы. Когда вы устанавливаете ручку на очень медленную скорость затвора, затвор остается открытым в течение очень долгого времени. Когда вы устанавливаете ручку на очень высокую скорость, вторая шторка следует непосредственно за первой шторкой, поэтому в любой момент времени экспонируется только крошечная щель кадра пленки.

Идеальная экспозиция зависит от размера светочувствительных зерен на пленке. Зерно большего размера с большей вероятностью поглощает фотоны света, чем зерно меньшего размера. На размер зерен указывает светочувствительность пленки , которая напечатана на канистре. Разная чувствительность пленки подходит для разных типов фотографии: например, пленка 100 единиц ISO оптимальна для съемки при ярком солнечном свете, а пленка 1600 единиц следует использовать только при относительно слабом освещении.

«» Внутри ручной зеркальной камеры вы найдете запутанную головоломку из шестеренок и пружин. Нажмите на каждое изображение, чтобы сделать крупный план в высоком разрешении.

Как видите, правильная экспозиция требует много усилий — вы должны сбалансировать светочувствительность пленки, размер диафрагмы и выдержку, чтобы соответствовать уровню освещенности в кадре. В зеркальных камерах с ручным управлением есть встроенный экспонометр, который поможет вам в этом. Основным компонентом люксметра является панель полупроводниковых датчиков света, чувствительных к световой энергии. Эти датчики выражают эту световую энергию как электрическую энергию, которую система экспонометра интерпретирует на основе пленки и скорости затвора.

Теперь давайте посмотрим, как корпус зеркальной фотокамеры направляет реальное изображение в видоискатель до того, как вы сделаете снимок, а затем направляет его на пленку, когда вы нажимаете кнопку спуска затвора.

Реклама

Зеркальные камеры против «наведи и снимай»

На рынке представлено два типа потребительских пленочных фотоаппаратов — зеркальные фотоаппараты и фотоаппараты типа «наведи и снимай». Основное отличие заключается в том, как фотограф видит сцену. В камере типа «наведи и снимай» видоискатель представляет собой простое окошко в корпусе камеры. Вы не видите реального изображения, формируемого объективом камеры, но вы получаете приблизительное представление о том, что находится в поле зрения.

В зеркальной камере вы видите действительное реальное изображение, которое увидит пленка. Если вы снимите объектив с зеркальной камеры и заглянете внутрь, вы увидите, как это работает. Камера имеет наклонное зеркало, расположенное между затвором и объективом, с кусочком полупрозрачного стекла и призмой над ним. Эта конфигурация работает как перископ — реальное изображение отражается от нижнего зеркала на полупрозрачное стекло, которое служит проекционным экраном. Работа призмы состоит в том, чтобы перевернуть изображение на экране, чтобы оно снова появилось правильной стороной, и перенаправить его в окно видоискателя.

Реклама

Когда вы нажимаете кнопку спуска затвора, камера быстро убирает зеркало в сторону, поэтому изображение направляется на экспонированную пленку. Зеркало подключено к системе таймера затвора, поэтому оно остается открытым, пока открыт затвор. Вот почему видоискатель внезапно затемняется, когда вы делаете снимок.

«» Зеркало в зеркальной камере направляет реальное изображение в видоискатель. Когда вы нажимаете кнопку спуска затвора, зеркало поднимается, и на пленку проецируется реальное изображение.

В камерах такого типа зеркало и полупрозрачный экран настроены таким образом, что они представляют реальное изображение точно таким, каким оно появится на пленке. Преимущество этого дизайна в том, что вы можете настроить фокус и скомпоновать сцену, чтобы получить именно то изображение, которое вы хотите. По этой причине профессиональные фотографы обычно используют зеркальные камеры.

В наши дни большинство зеркальных камер оснащены как ручным, так и автоматическим управлением, а большинство компактных камер полностью автоматические. Концептуально автоматические камеры очень похожи на полностью ручные модели, но все управляется центральным микропроцессором, а не пользователем. Центральный микропроцессор получает информацию от системы автофокусировки и экспонометра. Затем он активирует несколько небольших моторов, которые регулируют положение объектива, а также открывают и закрывают диафрагму. В современных камерах это довольно продвинутая компьютерная система.

«» В автоматической камере «наведи и снимай» вместо шестерен и пружин используются печатные платы и электродвигатели.

В следующем разделе мы рассмотрим другой конец спектра — конструкцию камеры без сложных механизмов, без объектива и практически без движущихся частей.

Реклама

Самодельные камеры

Как мы видели в этой статье, даже самая простая, полностью ручная зеркальная фотокамера представляет собой сложную замысловатую машину. Но камеры сами по себе не сложны — на самом деле, основные элементы настолько просты, что вы можете сделать их сами, используя всего несколько недорогих материалов.

Самая простая самодельная камера не использует линзу для создания реального изображения — она собирает свет с крошечным отверстием. Эти камеры-обскуры просты в изготовлении и очень интересны в использовании — единственная трудность заключается в том, что вам нужно самостоятельно проявлять пленку.

Реклама

Камера-обскура — это просто коробка с крошечным отверстием на одной стороне и пленкой или фотобумагой на противоположной стороне. Если в остальном коробка «светонепроницаема», свет, проходящий через точечное отверстие, формирует реальное изображение на пленке. Научный принцип, лежащий в основе этого, очень прост.

Если посветить фонариком в темной комнате через маленькое отверстие в широком куске картона, свет образует точку на противоположной стене. Если вы переместите фонарик, светящаяся точка тоже будет двигаться — лучи света от фонарика проходят через отверстие по прямой линии.

В большой визуальной сцене каждая конкретная видимая точка действует как этот фонарик. Свет отражается от каждой точки объекта и распространяется во всех направлениях. Небольшое отверстие пропускает узкий луч из каждой точки сцены. Лучи движутся по прямой линии, поэтому световые лучи из нижней части сцены попадают на верхнюю часть куска пленки, и наоборот. Таким образом, на противоположной стороне коробки формируется перевернутое изображение сцены. Поскольку отверстие такое маленькое, вам потребуется довольно длительное время экспозиции, чтобы пропустить достаточно света.

Есть несколько способов сделать такую ​​камеру — некоторые энтузиасты даже использовали старые холодильники и автомобили в качестве светонепроницаемых коробок. В одном из самых популярных дизайнов используется обычная цилиндрическая коробка из-под овсяных хлопьев, кофейная банка или аналогичный контейнер. Проще всего использовать картонный контейнер со съемной пластиковой крышкой.

Вы можете собрать эту камеру, выполнив несколько простых шагов:

  1. Первое, что нужно сделать, это покрасить крышку в черный цвет внутри и снаружи . Это помогает защитить коробку от света. Обязательно используйте матовая черная краска , а не глянцевая краска, которая будет отражать больше света.
  2. Вырежьте небольшое отверстие (размером со спичечный коробок) в центре дна канистры (несъемная сторона).
  3. Вырежьте кусок плотной алюминиевой фольги или плотной черной бумаги размером примерно в два раза больше отверстия в дне канистры.
  4. Возьмите швейную иглу № 10 и аккуратно проделайте отверстие в центре фольги . Вы должны ввести иглу только наполовину, иначе отверстие будет слишком большим. Для достижения наилучших результатов поместите фольгу между двумя каталожными карточками и вращайте иглу, проталкивая ее.
  5. Заклейте фольгой отверстие в нижней части канистры так, чтобы отверстие оказалось по центру. Надежно закрепите фольгу черной лентой , чтобы свет попадал только через точечное отверстие.
  6. Все, что вам нужно для шторки , — это кусок плотной черной бумаги, достаточно большой, чтобы закрыть большую часть дна канистры. Надежно прикрепите одну сторону бумаги к боковой стороне дна канистры , чтобы получился клапан над отверстием посередине. Заклейте другую сторону клапана с другой стороны отверстия лентой.0010 . Держите крышку закрытой, пока не будете готовы сделать снимок.
  7. Чтобы загрузить камеру, прикрепите любую пленку или фотобумагу к внутренней стороне крышки канистры . Конечно, чтобы пленка работала, вы должны загрузить ее и проявить в полной темноте. С такой конструкцией камеры вы не сможете просто отдать пленку в аптеку — вам придется проявить ее самостоятельно или попросить кого-нибудь помочь вам.

Выбор хорошей конструкции камеры, типа пленки и времени выдержки во многом является методом проб и ошибок. Но, как скажет вам любой энтузиаст пинхола, это экспериментирование — самое интересное в создании собственной камеры. Чтобы узнать больше о пинхол-фотографии и увидеть отличные конструкции камер, посетите некоторые из сайтов, перечисленных на следующей странице.

На протяжении всей истории фотографии существовали сотни различных систем камер. Но удивительно, что все эти конструкции — от самой простой самодельной коробчатой ​​камеры до новейшей цифровой камеры — сочетают в себе одни и те же основные элементы: систему линз для создания реального изображения, светочувствительный датчик для записи реального изображения и механический датчик. система для управления тем, как реальное изображение экспонируется датчиком. И когда вы приступите к делу, это все, что нужно для фотографии!

Для получения дополнительной информации о камерах, свете, пленке и связанных темах перейдите по ссылкам ниже.

Реклама

Часто задаваемые вопросы о камере

Могу ли я загрузить камеру для своего компьютера?

Если в компьютер встроена камера, обычно на нем уже установлена ​​программа, необходимая для ее запуска. Вы можете загрузить бесплатное программное обеспечение, такое как Windows Camera, если вам нужна программа. Однако, если на вашем компьютере нет камеры, вам необходимо приобрести внешнюю веб-камеру.

Как получить доступ к Google Camera?

Камера Google входит в стандартную комплектацию всех смартфонов Google. Вы должны иметь доступ к нему, найдя приложение на своем телефоне и щелкнув его.

Какая камера лучше всего подходит для фотографии?

Выбор лучшей камеры для фотографии очень субъективен. Тем не менее, Sony a6100, Canon EOS Rebel T8i и Nikon D3500 — отличные цифровые камеры, подходящие для начинающих фотографов и фотографов среднего уровня.

Открытая камера бесплатна?

Open Camera, приложение для Android, которое можно загрузить и использовать совершенно бесплатно.

Сколько стоит веб-камера?

Вы можете получить хорошую веб-камеру менее чем за 100 долларов, при этом большинство вариантов стоит около 70 долларов. Лучшим бюджетным вариантом является веб-камера Aukey PC-LM1 Full HD, которая обычно стоит от 40 до 60 долларов в зависимости от продавца и от того, продается ли она в данный момент.

Много дополнительной информации

Связанные статьи HowStuffWorks

Другие отличные ссылки

  • WebSLR
  • Коробка с овсянкой Пинхол Фотография
  • Американский музей фотографии
  • История фотографии

Процитируйте это!

Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно процитировать эту статью HowStuffWorks.com:

Том Харрис «Как работают камеры» 21 марта 2001 г.
HowStuffWorks.com. 22 апреля 2023 г.

Citation

Как работают камеры | HowStuffWorks

Фотография, несомненно, является одним из самых важных изобретений в истории — она действительно изменила представление людей о мире. Теперь мы можем «видеть» всевозможные вещи, которые на самом деле находятся за много миль — и лет — от нас. Фотография позволяет запечатлеть моменты времени и сохранить их на долгие годы.

Базовая технология, которая делает все это возможным, довольно проста. Фотокамера состоит из трех основных элементов: оптического элемента (объектива), химического элемента (пленки) и механического элемента (сам корпус камеры). Как мы увидим, единственная хитрость в фотографии — это калибровка и комбинирование этих элементов таким образом, чтобы они записывали четкое, узнаваемое изображение.

Реклама

Есть много разных способов собрать все вместе. В этой статье мы рассмотрим ручная однообъективная зеркальная камера (SLR). Это камера, в которой фотограф видит точно такое же изображение, которое экспонируется на пленку, и может все настроить, поворачивая циферблаты и нажимая кнопки. Поскольку для съемки не требуется электричество, зеркальная фотокамера с ручным управлением прекрасно иллюстрирует основные процессы фотографии.

Оптический компонент камеры — объектив . В самом простом случае линза — это изогнутый кусок стекла или пластика. Его работа состоит в том, чтобы собирать лучи света, отражающиеся от объекта, и перенаправлять их так, чтобы они вместе образовывали реальное изображение — изображение, которое выглядит точно так же, как сцена перед объективом.

Но как это может сделать кусок стекла? Процесс на самом деле очень простой. Когда свет переходит из одной среды в другую, он меняет скорость. Свет распространяется быстрее через воздух, чем через стекло, поэтому линза замедляет его.

Когда световые волны входят в стекло под углом, одна часть волны достигает стекла раньше другой и начинает замедляться первой. Это что-то вроде толкания тележки с тротуара на траву под углом. Правое колесо первым касается травы и поэтому замедляется, пока левое колесо все еще находится на асфальте. Поскольку левое колесо кратковременно движется быстрее, чем правое, тележка для покупок поворачивает вправо, когда движется по траве.

«»

Воздействие на свет такое же: когда он входит в стекло под углом, он изгибается в одном направлении. Он снова изгибается, когда выходит из стекла, потому что части световой волны входят в воздух и ускоряются раньше других частей волны. В стандартной собирающей линзе или выпуклой линзе одна или обе стороны стекла выгнуты наружу. Это означает, что лучи света, проходящие через линзу, будут преломляться к центру линзы при входе. В двояковыпуклой линзе , например увеличительное стекло, свет будет искривляться как при выходе, так и при входе.

«»

Эффективно изменяет путь света от объекта. Источник света, скажем, свеча, излучает свет во всех направлениях. Все лучи света начинаются в одной и той же точке — пламени свечи — и затем постоянно расходятся. Собирающая линза собирает эти лучи и перенаправляет их так, чтобы все они снова сходились в одну точку. В точке, где лучи сходятся, получается реальное изображение свечи. В следующих двух разделах мы рассмотрим некоторые переменные, которые определяют, как формируется это реальное изображение.0003

Реклама

Содержание

  1. Камеры: Фокус
  2. Объективы камеры
  3. Камеры: записывающий свет
  4. Камеры: правильный свет
  5. Зеркальные камеры против «наведи и снимай»
  6. Самодельные камеры

htm»> Камеры: Фокус

Мы видели, что реальное изображение формируется светом, проходящим через выпуклую линзу. Природа этого реального изображения меняется в зависимости от того, как свет проходит через линзу. Этот световой путь зависит от двух основных факторов:

  • Угол входа светового луча в линзу
  • Структура линзы

Угол входа света изменяется, когда вы приближаете или удаляете объект от объектива. Вы можете увидеть это на диаграмме ниже. Лучи света от острия карандаша входят в линзу под более острым углом, когда карандаш находится ближе к линзе, и под более тупым углом, когда карандаш находится дальше. Но в целом линза искривляет световой луч только до определенной степени, независимо от того, как он входит. Следовательно, световые лучи, входящие под более острым углом, будут выходить под более тупым углом, и наоборот. Общий «угол изгиба» в любой конкретной точке линзы остается постоянным.

Реклама

Как видите, световые лучи из более близкой точки сходятся дальше от линзы, чем световые лучи из более удаленной точки. Другими словами, реальное изображение более близкого объекта формируется дальше от линзы, чем реальное изображение более удаленного объекта.

Вы можете наблюдать это явление с помощью простого эксперимента. Зажгите в темноте свечу и держите между ней и стеной увеличительное стекло. Вы увидите перевернутое изображение свечи на стене. Если реальное изображение свечи не падает прямо на стену, оно будет выглядеть несколько размытым. Лучи света из определенной точки в этой точке не совсем сходятся. Чтобы сфокусировать изображение, переместите увеличительное стекло ближе или дальше от свечи.

«»

Это то, что вы делаете, когда поворачиваете объектив камеры, чтобы сфокусировать его — вы перемещаете его ближе или дальше от поверхности пленки. Когда вы перемещаете объектив, вы можете выровнять сфокусированное реальное изображение объекта так, чтобы оно попадало прямо на поверхность пленки.

Теперь вы знаете, что в любой точке линза преломляет световые лучи в определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы .0010 .

Реклама

Объективы камеры

В предыдущем разделе мы видели, что в любой точке линза преломляет световые лучи до определенной степени, независимо от угла входа светового луча. Этот общий «угол изгиба» определяется структурой линзы.

Линза с более круглой формой (центр, который выступает дальше) будет иметь более острый угол изгиба. По сути, изгиб линзы увеличивает расстояние между различными точками на линзе. Это увеличивает время, в течение которого одна часть световой волны движется быстрее, чем другая часть, поэтому свет делает более резкий поворот.

Реклама

Увеличение угла изгиба дает очевидный эффект. Лучи света из определенной точки сойдутся в точке, расположенной ближе к линзе. В линзе с более плоской формой лучи света не будут поворачиваться так резко. Следовательно, световые лучи будут сходиться дальше от линзы. Иными словами, сфокусированное реальное изображение формируется дальше от линзы, когда линза имеет более плоскую поверхность.

Увеличение расстояния между объективом и реальным изображением фактически увеличивает общий размер реального изображения. Если подумать, в этом есть смысл. Подумайте о проекторе: по мере того, как вы отдаляете проектор от экрана, изображение становится больше. Проще говоря, световые лучи продолжают расходиться, приближаясь к экрану.

В камере происходит то же самое. По мере увеличения расстояния между объективом и реальным изображением световые лучи рассеиваются больше, формируя реальное изображение большего размера. Но размер пленки остается постоянным. Когда вы прикрепляете очень плоский объектив, он проецирует большое реальное изображение, но пленка экспонируется только в его средней части. По сути, объектив фокусируется на середине кадра, увеличивая небольшую часть сцены перед вами. Более круглая линза дает меньшее реальное изображение, поэтому поверхность пленки видит гораздо более широкую область сцены (при уменьшенном увеличении).

Профессиональные камеры позволяют прикреплять различные объективы, чтобы вы могли видеть сцену с разным увеличением. Сила увеличения объектива описывается его фокусным расстоянием . В камерах фокусное расстояние определяется как расстояние между объективом и реальным изображением объекта на дальнем расстоянии (например, луны). Более высокое число фокусного расстояния указывает на большее увеличение изображения.

Разные объективы подходят для разных ситуаций. Если вы фотографируете горный хребет, вы можете использовать телеобъектив , объектив с особенно большим фокусным расстоянием. Этот объектив позволяет сосредоточиться на определенных элементах на расстоянии, поэтому вы можете создавать более плотные композиции. Если вы снимаете портрет крупным планом, вы можете использовать широкоугольный объектив . Этот объектив имеет гораздо более короткое фокусное расстояние, поэтому он уменьшает сцену перед вами. Пленка освещает все лицо, даже если объект находится всего в футе от камеры. Стандартный 50-миллиметровый объектив камеры не увеличивает и не уменьшает изображение, что делает его идеальным для съемки объектов, которые не находятся особенно близко или далеко.

Реклама

Камеры: записывающий свет

Химическим компонентом традиционной камеры является пленка . По существу, когда вы подвергаете пленку реальному изображению , она создает химическую запись картины света.

Он делает это с помощью набора крошечных светочувствительных зерен, распределенных в виде химической суспензии на полоске пластика. Под воздействием света зерна вступают в химическую реакцию.

Реклама

Когда рулон закончен, пленка проявляется — она ​​подвергается воздействию других химикатов, которые вступают в реакцию со светочувствительными зернами. В черно-белой пленке химические вещества-проявители затемняют зерна, подвергшиеся воздействию света. Это создает негатив, где более светлые области кажутся темнее, а более темные области кажутся светлее, который затем преобразуется в позитив при печати.

Цветная пленка состоит из трех различных слоев светочувствительных материалов, которые, в свою очередь, реагируют на красный, зеленый и синий цвета. Когда пленка проявляется, эти слои подвергаются воздействию химических веществ, которые окрашивают слои пленки. Когда вы накладываете информацию о цвете со всех трех слоев, вы получаете полноцветный негатив.

Подробное описание всего этого процесса см. в статье «Как работает фотопленка».

До сих пор мы рассматривали основную идею фотографии: вы создаете реальное изображение с помощью собирающей линзы и записываете световой узор этого реального изображения на слой светочувствительного материала. Концептуально это все, что нужно для создания фотографии. Но чтобы получить четкое изображение, вы должны тщательно контролировать, как все складывается.

Очевидно, что если бы вы положили на землю кусок пленки и сфокусировали на нем реальное изображение с помощью собирающей линзы, вы не получили бы никакого пригодного для использования изображения. На открытом воздухе каждое зерно в пленке будет полностью освещено светом. А без контрастных неэкспонированных участков нет картинки.

Чтобы сделать снимок, вы должны держать пленку в полной темноте, пока не придет время делать снимок. Затем, когда вы хотите записать изображение, вы пропускаете немного света. На самом базовом уровне это все, что представляет собой корпус камеры — герметичная коробка с затвором , который открывается и закрывается между объективом и пленкой. . На самом деле, термин камера сокращен от camera obscura , буквально «темная комната» на латыни.

Чтобы изображение получилось правильным, необходимо точно контролировать количество света, попадающего на пленку. Если вы пропустите слишком много света, слишком много зерен среагирует, и изображение будет размытым. Если вы не позволите достаточному количеству света попасть на пленку, будет реагировать слишком мало зерен, и изображение будет слишком темным. В следующем разделе мы рассмотрим различные механизмы камеры, позволяющие регулировать экспозицию.

Реклама

Камеры: правильный свет

В предыдущем разделе мы видели, что вам необходимо тщательно контролировать экспозицию пленки, иначе изображение получится слишком темным или слишком ярким. Так как же настроить этот уровень экспозиции? Вы должны учитывать два основных фактора:

  • Сколько света проходит через объектив
  • Как долго экспонируется пленка

Чтобы увеличить или уменьшить количество света, проходящего через объектив, вы должны изменить размер апертура — отверстие объектива. Это работа ирисовой диафрагмы , ряда перекрывающихся металлических пластин, которые могут складываться друг на друга или расширяться. По сути, этот механизм работает так же, как радужная оболочка вашего глаза — она открывается или закрывается по кругу, уменьшая или увеличивая диаметр хрусталика. Когда объектив меньше, он улавливает меньше света, а когда он больше, он улавливает больше света.

Реклама

Продолжительность воздействия определяется скорость затвора . В большинстве зеркальных камер используется затвор в фокальной плоскости . Этот механизм очень прост — он в основном состоит из двух «занавесок» между объективом и пленкой. Перед тем, как сделать снимок, первая шторка закрывается, чтобы на пленку не попадал свет. Когда вы делаете снимок, эта занавеска открывается. Через определенное время вторая шторка опускается с другой стороны, чтобы остановить экспозицию.

Когда вы нажимаете кнопку спуска затвора камеры, открывается первая шторка, обнажая пленку. Через определенное время второй затвор закрывается, завершая экспозицию. Временная задержка регулируется ручкой выдержки камеры.

Это простое действие управляется сложной массой шестеренок, переключателей и пружин, как в часах. Когда вы нажимаете кнопку спуска затвора , она отпускает рычаг, который приводит в движение несколько шестеренок. Вы можете подтянуть или ослабить некоторые пружины, повернув ручку выдержки. Это регулирует зубчатый механизм, увеличивая или уменьшая задержку между открытием первой шторы и закрытием второй шторы. Когда вы устанавливаете ручку на очень медленную скорость затвора, затвор остается открытым в течение очень долгого времени. Когда вы устанавливаете ручку на очень высокую скорость, вторая шторка следует непосредственно за первой шторкой, поэтому в любой момент времени экспонируется только крошечная щель кадра пленки.

Идеальная экспозиция зависит от размера светочувствительных зерен на пленке. Зерно большего размера с большей вероятностью поглощает фотоны света, чем зерно меньшего размера. На размер зерен указывает светочувствительность пленки , которая напечатана на канистре. Разная чувствительность пленки подходит для разных типов фотографии: например, пленка 100 единиц ISO оптимальна для съемки при ярком солнечном свете, а пленка 1600 единиц следует использовать только при относительно слабом освещении.

«» Внутри ручной зеркальной камеры вы найдете запутанную головоломку из шестеренок и пружин. Нажмите на каждое изображение, чтобы сделать крупный план в высоком разрешении.

Как видите, правильная экспозиция требует много усилий — вы должны сбалансировать светочувствительность пленки, размер диафрагмы и выдержку, чтобы соответствовать уровню освещенности в кадре. В зеркальных камерах с ручным управлением есть встроенный экспонометр, который поможет вам в этом. Основным компонентом люксметра является панель полупроводниковых датчиков света, чувствительных к световой энергии. Эти датчики выражают эту световую энергию как электрическую энергию, которую система экспонометра интерпретирует на основе пленки и скорости затвора.

Теперь давайте посмотрим, как корпус зеркальной фотокамеры направляет реальное изображение в видоискатель до того, как вы сделаете снимок, а затем направляет его на пленку, когда вы нажимаете кнопку спуска затвора.

Реклама

Зеркальные камеры против «наведи и снимай»

На рынке представлено два типа потребительских пленочных фотоаппаратов — зеркальные фотоаппараты и фотоаппараты типа «наведи и снимай». Основное отличие заключается в том, как фотограф видит сцену. В камере типа «наведи и снимай» видоискатель представляет собой простое окошко в корпусе камеры. Вы не видите реального изображения, формируемого объективом камеры, но вы получаете приблизительное представление о том, что находится в поле зрения.

В зеркальной камере вы видите действительное реальное изображение, которое увидит пленка. Если вы снимите объектив с зеркальной камеры и заглянете внутрь, вы увидите, как это работает. Камера имеет наклонное зеркало, расположенное между затвором и объективом, с кусочком полупрозрачного стекла и призмой над ним. Эта конфигурация работает как перископ — реальное изображение отражается от нижнего зеркала на полупрозрачное стекло, которое служит проекционным экраном. Работа призмы состоит в том, чтобы перевернуть изображение на экране, чтобы оно снова появилось правильной стороной, и перенаправить его в окно видоискателя.

Реклама

Когда вы нажимаете кнопку спуска затвора, камера быстро убирает зеркало в сторону, поэтому изображение направляется на экспонированную пленку. Зеркало подключено к системе таймера затвора, поэтому оно остается открытым, пока открыт затвор. Вот почему видоискатель внезапно затемняется, когда вы делаете снимок.

«» Зеркало в зеркальной камере направляет реальное изображение в видоискатель. Когда вы нажимаете кнопку спуска затвора, зеркало поднимается, и на пленку проецируется реальное изображение.

В камерах такого типа зеркало и полупрозрачный экран настроены таким образом, что они представляют реальное изображение точно таким, каким оно появится на пленке. Преимущество этого дизайна в том, что вы можете настроить фокус и скомпоновать сцену, чтобы получить именно то изображение, которое вы хотите. По этой причине профессиональные фотографы обычно используют зеркальные камеры.

В наши дни большинство зеркальных камер оснащены как ручным, так и автоматическим управлением, а большинство компактных камер полностью автоматические. Концептуально автоматические камеры очень похожи на полностью ручные модели, но все управляется центральным микропроцессором, а не пользователем. Центральный микропроцессор получает информацию от системы автофокусировки и экспонометра. Затем он активирует несколько небольших моторов, которые регулируют положение объектива, а также открывают и закрывают диафрагму. В современных камерах это довольно продвинутая компьютерная система.

«» В автоматической камере «наведи и снимай» вместо шестерен и пружин используются печатные платы и электродвигатели.

В следующем разделе мы рассмотрим другой конец спектра — конструкцию камеры без сложных механизмов, без объектива и практически без движущихся частей.

Реклама

Самодельные камеры

Как мы видели в этой статье, даже самая простая, полностью ручная зеркальная фотокамера представляет собой сложную замысловатую машину. Но камеры сами по себе не сложны — на самом деле, основные элементы настолько просты, что вы можете сделать их сами, используя всего несколько недорогих материалов.

Самая простая самодельная камера не использует линзу для создания реального изображения — она собирает свет с крошечным отверстием. Эти камеры-обскуры просты в изготовлении и очень интересны в использовании — единственная трудность заключается в том, что вам нужно самостоятельно проявлять пленку.

Реклама

Камера-обскура — это просто коробка с крошечным отверстием на одной стороне и пленкой или фотобумагой на противоположной стороне. Если в остальном коробка «светонепроницаема», свет, проходящий через точечное отверстие, формирует реальное изображение на пленке. Научный принцип, лежащий в основе этого, очень прост.

Если посветить фонариком в темной комнате через маленькое отверстие в широком куске картона, свет образует точку на противоположной стене. Если вы переместите фонарик, светящаяся точка тоже будет двигаться — лучи света от фонарика проходят через отверстие по прямой линии.

В большой визуальной сцене каждая конкретная видимая точка действует как этот фонарик. Свет отражается от каждой точки объекта и распространяется во всех направлениях. Небольшое отверстие пропускает узкий луч из каждой точки сцены. Лучи движутся по прямой линии, поэтому световые лучи из нижней части сцены попадают на верхнюю часть куска пленки, и наоборот. Таким образом, на противоположной стороне коробки формируется перевернутое изображение сцены. Поскольку отверстие такое маленькое, вам потребуется довольно длительное время экспозиции, чтобы пропустить достаточно света.

Есть несколько способов сделать такую ​​камеру — некоторые энтузиасты даже использовали старые холодильники и автомобили в качестве светонепроницаемых коробок. В одном из самых популярных дизайнов используется обычная цилиндрическая коробка из-под овсяных хлопьев, кофейная банка или аналогичный контейнер. Проще всего использовать картонный контейнер со съемной пластиковой крышкой.

Вы можете собрать эту камеру, выполнив несколько простых шагов:

  1. Первое, что нужно сделать, это покрасить крышку в черный цвет внутри и снаружи . Это помогает защитить коробку от света. Обязательно используйте матовая черная краска , а не глянцевая краска, которая будет отражать больше света.
  2. Вырежьте небольшое отверстие (размером со спичечный коробок) в центре дна канистры (несъемная сторона).
  3. Вырежьте кусок плотной алюминиевой фольги или плотной черной бумаги размером примерно в два раза больше отверстия в дне канистры.
  4. Возьмите швейную иглу № 10 и аккуратно проделайте отверстие в центре фольги . Вы должны ввести иглу только наполовину, иначе отверстие будет слишком большим. Для достижения наилучших результатов поместите фольгу между двумя каталожными карточками и вращайте иглу, проталкивая ее.
  5. Заклейте фольгой отверстие в нижней части канистры так, чтобы отверстие оказалось по центру. Надежно закрепите фольгу черной лентой , чтобы свет попадал только через точечное отверстие.
  6. Все, что вам нужно для шторки , — это кусок плотной черной бумаги, достаточно большой, чтобы закрыть большую часть дна канистры. Надежно прикрепите одну сторону бумаги к боковой стороне дна канистры , чтобы получился клапан над отверстием посередине. Заклейте другую сторону клапана с другой стороны отверстия лентой.0010 . Держите крышку закрытой, пока не будете готовы сделать снимок.
  7. Чтобы загрузить камеру, прикрепите любую пленку или фотобумагу к внутренней стороне крышки канистры . Конечно, чтобы пленка работала, вы должны загрузить ее и проявить в полной темноте. С такой конструкцией камеры вы не сможете просто отдать пленку в аптеку — вам придется проявить ее самостоятельно или попросить кого-нибудь помочь вам.

Выбор хорошей конструкции камеры, типа пленки и времени выдержки во многом является методом проб и ошибок. Но, как скажет вам любой энтузиаст пинхола, это экспериментирование — самое интересное в создании собственной камеры. Чтобы узнать больше о пинхол-фотографии и увидеть отличные конструкции камер, посетите некоторые из сайтов, перечисленных на следующей странице.

На протяжении всей истории фотографии существовали сотни различных систем камер. Но удивительно, что все эти конструкции — от самой простой самодельной коробчатой ​​камеры до новейшей цифровой камеры — сочетают в себе одни и те же основные элементы: систему линз для создания реального изображения, светочувствительный датчик для записи реального изображения и механический датчик. система для управления тем, как реальное изображение экспонируется датчиком. И когда вы приступите к делу, это все, что нужно для фотографии!

Для получения дополнительной информации о камерах, свете, пленке и связанных темах перейдите по ссылкам ниже.

Реклама

Часто задаваемые вопросы о камере

Могу ли я загрузить камеру для своего компьютера?

Если в компьютер встроена камера, обычно на нем уже установлена ​​программа, необходимая для ее запуска. Вы можете загрузить бесплатное программное обеспечение, такое как Windows Camera, если вам нужна программа. Однако, если на вашем компьютере нет камеры, вам необходимо приобрести внешнюю веб-камеру.

Как получить доступ к Google Camera?

Камера Google входит в стандартную комплектацию всех смартфонов Google. Вы должны иметь доступ к нему, найдя приложение на своем телефоне и щелкнув его.

Какая камера лучше всего подходит для фотографии?

Выбор лучшей камеры для фотографии очень субъективен. Тем не менее, Sony a6100, Canon EOS Rebel T8i и Nikon D3500 — отличные цифровые камеры, подходящие для начинающих фотографов и фотографов среднего уровня.

Открытая камера бесплатна?

Open Camera, приложение для Android, которое можно загрузить и использовать совершенно бесплатно.

Сколько стоит веб-камера?

Вы можете получить хорошую веб-камеру менее чем за 100 долларов, при этом большинство вариантов стоит около 70 долларов. Лучшим бюджетным вариантом является веб-камера Aukey PC-LM1 Full HD, которая обычно стоит от 40 до 60 долларов в зависимости от продавца и от того, продается ли она в данный момент.

Из чего состоит камера: Как устроена камера смартфона? Просто о сложном

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх