Как работает синхронизатор: как работает и почему ломается

Содержание

Синхронизатор коробки передач – устройство, работа

Все современные механические коробки передач, а также роботизированные коробки передач являются синхронизированными. В таких коробках для того, чтобы включить передачу, производится выравнивание частоты вращения вала и шестерни. Синхронизацию обеспечивает одноименное устройство – синхронизатор. Помимо плавного переключения передач синхронизатор снижает износ механического соединения, шум при переключении и, тем самым, увеличивает срок службы коробки передач.

Синхронизаторами оборудуются все передачи коробки передач легкового автомобиля, в том числе передача заднего хода. Принцип действия синхронизатора основан на использовании сил трения при выравнивании скоростей. Чем выше разница в частотах вращения вала и шестерни, тем больше должна быть величина силы трения для их синхронизации. Выполнение данного условия достигается путем увеличения площади поверхности соприкосновения – установкой дополнительных фрикционных колец.

Устройство синхронизатора

Синхронизатор состоит из ступицы с сухарями, муфты включения, блокирующего кольца и шестерни с фрикционным конусом. В конструкции коробки передач один синхронизатор обслуживает две передачи (шестерни).

Конструктивной основой синхронизатора является ступица. Она имеет внутренние и наружные шлицы. С помощью внутренних шлицев ступица соединяется с вторичным валом коробки передач и имеет возможность осевого перемещения по нему в разные стороны. Наружные шлицы соединяют ступицу с муфтой включения.

По окружности ступицы под углом 120° выполнены три паза, в которые установлены подпружиненные сухари. В синхронизаторе сухари нажимают на блокирующее кольцо при включении передачи и способствуют блокировке муфты на этапе синхронизации.

Муфта включения (другое название – муфта синхронизатора) обеспечивает жесткое соединение вала и шестерни. Муфта насажена на ступицу и имеет внутренние шлицы. На шлицах выполнена кольцевая проточка, в которой размещаются выступы сухарей. Снаружи муфта синхронизатора соединяется с вилкой коробки передач.

Блокирующее кольцо обеспечивает синхронизацию и препятствует замыканию муфты до момента выравнивания скоростей вала и шестерни. С внутренней стороны блокирующее кольцо имеет коническую поверхность, которая взаимодействует с фрикционным конусом шестерни. Снаружи блокирующее кольцо имеет шлицы, с помощью которых производится блокировка муфты включения.

На торцевой поверхности блокирующего кольца со стороны ступицы выполнено три паза, в которые входят сухари ступицы. Пазы препятствуют прокручиванию кольца при соприкосновении с фрикционным конусом (в них упираются сухари). Размер пазов в 1,5 раза превышает размер сухарей. В некоторых конструкциях синхронизаторов, наоборот, на блокирующем кольце выполнены выступы, а пазы — в ступице.

Для увеличения поверхности соприкосновения, снижения усилия при переключении передач применяются многоконусные синхронизаторы: двухконусный, трехконусный. Например, в трехконусном синхронизаторе помимо блокирующего (наружного) кольца устанавливается еще внутреннее и промежуточное кольца. Для предотвращения проворачивания на кольцах выполнены выступы, которые фиксируются в пазах шестерни и блокирующего кольца.

Таким образом, в трехконусном синхронизаторе созданы три поверхности трения: между конусом шестерни и внутренним кольцом, между внутренним и промежуточным кольцом, между промежуточным и блокирующим кольцом. В зависимости от конструкции в одной коробке передач могут устанавливаться синхронизаторы с различным числом конусов.

Работа синхронизатора

В нейтральном положении рычага коробки передач муфты синхронизаторов находятся в среднем положении, шестерни на ведомом валу вращаются свободно, поток мощности не передается.

При включении передачи вилка перемещает муфту синхронизатора из среднего положения в направлении шестерни. Вместе с муфтой сдвигаются сухари, которые воздействуют на блокирующее кольцо. Кольцо прижимается к конусу шестерни. На поверхности возникает сила трения, которая поворачивает кольцо до упора сухарей в пазах кольца (кольцо стопорится от проворачивания). В этом положении блокирующее кольцо препятствует дальнейшему продвижению муфты синхронизатора по оси вала, так как торцы шлицев блокирующего кольца располагаются напротив торцов шлицев муфты.

Далее под действием сил трения происходит синхронизация скоростей шестерни и ведомого вала. Когда скорости выравнены, под нажимом шлицев муфты блокирующее кольцо поворачивается в противоположную сторону, блокировка муфты снимается, шлицы муфты свободно проходят для зацепления с венцом шестерни. Происходит жесткое соединение вторичного вала коробки передач и шестерни.

Несмотря на множество операций, весь процесс синхронизации и включения передачи занимает доли секунды.

 

 

Устройство и принцип работы синхронизатора КПП

Множество современных автомобилей оснащаются коробками передач, в конструкции которых предусмотрено использование устройства под названием синхронизатор. Это специальный механизм, главной задачей которого является эффект выравнивания частоты осуществляемого валом и коробочными шестернями текущего вращения.

Практически все актуальные роботизированные и механические автомобильные коробки, устанавливаемые на новые авто, синхронизированы. То есть в них применяются синхронизаторы. Это полезный и важный компонент конструкции, позволяющий ускорять процесс переключения скоростей, а также делать это плавно.

Потому автомобилистам и автолюбителям интересно узнать, что же собой представляет этот механизм, их чего он состоит и как работает. Также не лишним будет разобраться в его ресурсе и продолжительности срока службы.

Назначение

Первым делом разберём основное назначение специального синхронизатора, который устанавливается на КПП указанных типов.

Синхронизатор присутствует на всех передачах (скоростях) в КПП на современных легковых автотранспортных средствах, включая ту скорость, которая непосредственно отвечает за движение автомашины задним ходом. Не трудно догадаться, для чего в КПП нужен этот самый синхронизатор. Именно он обеспечивает необходимое коробке текущее выравнивание частоты осуществляемого вращения вала и рабочих шестерней, что требуется для последовательного и плавного включения и дальнейшего переключения необходимых водителю передач при управлении ТС. Устройство такого типа позволяет безударно осуществлять переключения, создавая нужную скорость вращения компонентов. То есть рассматриваемый синхронизатор выполняет действительно важную функцию, которая положительно сказывается на комфорте водителя и состоянии самой коробки.

Помимо обеспечения плавного процесса переключения, механизм также способен снижать уровень шума, издаваемого коробкой. Наличие такого компонента в конструкции КПП способствует заметному снижению уровня эксплуатационного износа компонентов коробки, тем самым продлевается общий срок службы всего узла.

Появление синхронизаторов позволило существенно упростить сам принцип осуществляемого переключения скоростей. Он теперь значительно удобнее и комфортнее, поскольку ранее водителям приходилось тщательно выжимать дважды сцепление и переводить коробку в так называемое нейтральное положение.

Автомобилисты справедливо интересуются, сколько именно синхронизаторов инженерами было предусмотрено в конструкции КПП. Количество этих механизмов соответствует зачастую количеству скоростей на коробке конкретного автомобиля. Преимущественно на современных коробках предусматривается использование синхронизирующих устройств на каждую из имеющихся передач, включая заднюю.

Но бывают и исключения, что предусмотрено скорее на некоторых бюджетных легковых транспортных средствах. Здесь может отсутствовать синхронизатор на первой рабочей, используемой как стартовая, передаче. Дополнительно механизм на первой скорости отсутствует на грузовых машинах, старых легковых авто и пр.

Устройство и конструкция

Само устройство коробочного синхронизатора, применяемого в конструкции КПП, использует в работе силу трения в непосредственно того момент, когда происходит необходимое условие в виде выравнивания двух скоростей. В непосредственной зависимости от того, какая разница между имеющимися частотами осуществляемого вращения элементов, соответствующим образом происходят изменения в силе присутствующего трения для самого синхронизатора.

То есть эффективность работы механизма обеспечивается путём увеличения текущей площади контакта или поверхности создаваемого соприкосновения. Чтобы решить такую задачу, инженеры предусмотрели использование специальных фрикционных колец, которые интегрированы в конструкцию МКПП и РКПП.

Если говорить про конструктивные особенности синхронизатора, используемого для коробки передач, то это устройство предусматривает обязательное включение таких компонентов как:

  • рабочие ступицы;
  • сухари;
  • муфты;
  • блокировочные (стопорные) кольца;
  • шестерни со специальными фрикционными конусами.

В РКПП и МКПП зачастую один механизм установленного синхронизатора создаёт и обеспечивает синхронную работу сразу 2 скоростей, то есть одновременно задействован в работе пары шестерней.

  • Основным и ключевым конструктивным элементом считается ступица, на которой разработчиками предусмотрено наличие наружных и внутренних специальных шлицев;
  • Внутренние рабочие шлицы элемента необходимы в конструкции для того, чтобы создавать надёжное соединение со вторичным валом коробки. Дополнительно предусмотрена возможность совершения осевых перемещений по самому рабочему валу;
  • Наружные шлицы необходимы для создания соединения между ступицей и муфтой коробочного синхронизатора;
  • По всей имеющейся окружности используемой ступицы заранее предусмотрены специальные пазы в количестве 3 штук. В них вставляются так называемые сухари, имеющие дополнительное подпружинивание;
  • Эти сухари отвечают за нажатие или воздействие на блоккольцо (кольцо блокировки) в именно тот момент, когда происходит включение скорости на КПП, а также за эффективную и необходимую блокировку рабочей муфты при непосредственно самой синхронизации;
  • С помощью специальной муфты создаётся жёсткое соединение между валом и рабочей шестерёнкой КПП. Она монтируется на самой ступице и имеет в арсенале соответствующие внутренние шлицы. На них предусмотрена кольцевая специальная проточка, необходимая как выступы для используемых в узле сухарей. Ещё к муфте подключается вилка коробки;
  • Кольцо непосредственно отвечает здесь за саму синхронизацию, не даёт рабочей муфте замкнуться прямо до наступления момента, когда текущие скорости элементов (вал и шестерни) не станут равными;
  • У блокировочного синхронизаторного кольца конструкцией заранее на этапе производства предусмотрено наличие специальной поверхности, обладающей конической формой с его внутренней части (стороны). Эта поверхность создаёт контакт с самими фрикционными используемыми конусами шестерёнок. С наружной стороны без шлицев также не обошлось. Они уже необходимы для блокирования муфты, отвечающей за включение;
  • На торцевой рабочей поверхности блокировочного кольца, если смотреть со стороны рабочей ступицы механизма, есть сразу 3 паза. В них входят сухари от ступицы. За счёт пазов блоккольцо не прокручивается, когда контактирует непосредственно с фрикционным рабочим конусом, поскольку эти выточенные пазы по своей сути выступают как упоры под сухари.

Существуют некоторые разновидности КПП с установленными на них синхронизаторами, где выступы в узле разработчиками выполнены непосредственно на самом блоккольце, в то время как пазы присутствуют уже в самой рабочей ступице. С целью увеличения поверхности контакта или соприкосновения, применяются специальные синхронизаторы, имеющие сразу несколько конусов одновременно. Обычно их 2 или 3. Их называют двухконусными и трёхконусными синхронизаторами соответственно.

Как пример можно привести вариант, где в трёхконусном механизме, помимо самого наружного кольца блокировки, есть также внутреннее и специальное дополнительное блоккольцо, так называемое промежуточное. Чтобы не допустить их проворачивание, на самих рассмотренных блоккольцах предусмотрено наличие собственных выступов. С их помощью рабочие кольца фиксируются в определённых пазах рабочих коробочных шестерней.

В результате всего этого получается, что у трёхконусных синхронизаторов присутствует одновременно 3 поверхности создаваемого трения:

  • первая идёт между внутренним блоккольцом и самим конусом рабочей шестерни;
  • вторая поверхность соединяет два кольца, а именно внутреннее и промежуточное;
  • третья заключена между наружным блоккольцом и непосредственно промежуточным.

Напоследок стоит добавить, что в основе конструкции некоторых механических и более современных роботизированных автомобильных коробок предусматривается возможность одновременного использования двухконусных и трёхконусных типов синхронизаторов.

Принцип работы

Чтобы лучше понять суть и назначение механизма, следует разобраться в том, как на практике работают синхронизаторы в коробках передач того или иного типа.

Всю работу узла можно описать примерно следующим образом:

  • Когда рычаг автомобильной коробки находится в так называемом нейтральном положении, двигатель не передаёт на КПП свою мощность;
  • В этот момент муфта коробочного синхронизатора располагается в своём среднем положении. Параллельно шестерни, зафиксированные на валу, осуществляют свободное вращение;
  • Когда водитель переключается на передачу, вилка осуществляет заданное перемещение рабочей муфты используемого в конструкции КПП синхронизатора, смещая её из текущего среднего положения в направлении к рабочим шестерням;
  • Параллельно, когда сдвигается сама муфта, также происходит смещение сухарей. Они, в свою очередь, оказывают воздействие синхронизаторное на блокировочное кольцо;
  • Это кольцо начинает прижиматься к шестерёночному конусу, что способствует образованию силы трения;
  • Под воздействием возникшей силы трения кольцо начинает проворачиваться до полного упора так называемых сухарей в пазах блоккольца;
  • Кольца стопорятся, и дальше смещаться и проворачиваться они не могут;
  • Также кольцо блокировки не позволяет синхронизаторной муфте смещаться по оси ведомого вала;
  • Это достигается за счёт того, что торцевые части шлицев блоккольца располагаются непосредственно напротив относительно шлицев самой муфты;
  • Далее, находясь под прямым действием возникшей силы трения, синхронизируются скорости вращения ведомого вала и рабочих шестерней;
  • Когда выравнивание скоростей произойдёт, за счёт нажима шлицев муфты, блоккольцо начнёт поворачиваться уже в противоположное направление;
  • Тем самым прекращается блокировка муфты, а шлицы этой муфты начинают без ограничений цепляться за венец шестерни. В результате создаётся достаточно жёсткое соединение между шестерней и вторичным валом установленной на авто коробки.

Исходя из всего сказанного, процесс так называемой синхронизации скоростей на коробке передач подразумевает протекание одновременно нескольких различных процессов. Хотя если проверять работу на практике, все эти действия осуществляются очень быстро. Это позволяет водителю практически моментально переключаться между разными передачами, не ощущая дискомфорт, задержки или удары при этом процессе. Как показали испытания и эксперименты, на синхронизацию уходят доли секунды.

Важной особенностью и главным преимуществом применения синхронизаторов является способность обеспечивать плавное переключение скоростей. Отсутствует необходимость осуществлять двойной выжим педали сцепления в случае с механическими трансмиссиями.

Тем самым синхронизаторы позволили упростить процесс управления автотранспортным средством за счёт применения синхронизированных коробок передач. Они работают быстро, плавно, без ударов и рывков. Использование такого узла позволяет рассчитывать на более продолжительный срок службы всей трансмиссии.

То есть наличие синхронизатора пошло на пользу не только в плане комфорта и эффективности работа КПП. Такая модернизация крайне положительно повлияла на ресурс коробки.

Неисправности и вопрос замены

Когда речь идёт о неисправностях в работе коробки передач, бывалые автомобилисты и специалисты в области ремонта КПП рекомендуют начинать проверку и диагностику с состояния узла сцепления. Если там всё оказалось в порядке, и никаких проблем нет, можно уже проверить синхронизаторы, непосредственно связанные с переключением передач на автомобиле.

Вопрос лишь в том, как это сделать и что даёт возможность убедиться в неисправностях КПП, связанных непосредственно с синхронизаторами.

Для проверки работоспособности синхронизатора следует опираться на несколько характерных признаков, указывающих на возникновение проблем с этим узлом.

  • Шум, появляющийся в процессе функционирования коробки передач. Нехарактерный шум и неприятный звук может быть обусловлен тем, что блокирующие кольца деформировались и искривились. Такое происходит достаточно часто, если обнаруживаются проблемы в КПП. Но также нельзя исключать, что причиной шума стал изношенный конус;
  • Передачи выключаются самопроизвольно, и водитель не имеет к этому никакого отношения. Самопроизвольное выключение скорости на коробке говорит наверняка о том, что проблемы связаны с муфтой. Альтернативным вариантом считается износ ресурса шестерни. Она уже не справляется с возложенными на неё задачами, и нуждается в скорейшей замене;
  • Передачи включаются с определённым усилием. Иногда приходится приложить достаточно большую силу, что нехарактерно для коробки передач, для включения другой скорости. Это прямой признак полного износа синхронизатора, который уже не годится для дальнейшей работы.

Важно учитывать, что ремонт такого узла как синхронизатор коробки является очень трудоёмким процессом. Зачастую проведение подобных ремонтно-восстановительных мероприятий совершенно себя не оправдывает. В редких случаях прибегают к ремонту. Объективно самым простым и финансово оправданным решением является замена узла. Требуется лишь демонтировать старый синхронизатор, предварительно убедившись, что все проблемы именно из-за него, а затем установить новый механизм.

Весь процесс замены выглядит следующим образом:

  • Для начала снимается сама коробка передач с автомобиля. При этом её обязательно рекомендуется полностью очистить, удалить все загрязнения и подготовить к дальнейшим работам;
  • Затем демонтируется кронштейн троса узла сцепления коробки. Тут сначала придётся открутить крепёжные гайки, на которых удерживается крышка, а затем снять уже саму крышку;
  • Следующим этапом является снятие крепёжного болта от вилки у пятой передачи. Требуется включить её. Для этого муфта синхронизатора вместе с вилкой перемещаются вниз;
  • Делается такая процедура последовательно и аккуратно. Тут важно, чтобы шлицы муфты оказались в зацеплении с шестернёй;
  • Проделав такую процедуру, потребуется включить 3 или 4 передачу на коробке;
  • Потом снимается крепёжная гайка, удерживающая первичный вал;
  • Чтобы хоть немного сдвинуть гайку с мёртвой точки, потребуется внушительное усилие. Это обусловлено тем, что эта гайка изначально затягивается с большим моментом;
  • Аналогичная процедура проделывается с крепёжной гайкой, которая удерживает уже вторичный вал;
  • В результате остаётся только немного приподнять ведомую шестерню у 5 передач, прихватив при этом вилку вторичного вала и синхронизатор, и снять узел.

Все работы проводятся при пристальном контроле муфты. Нельзя допускать, чтобы в процессе замены эта сходила со ступицы.

Установка нового механизма осуществляется строго в обратной последовательности процедуры демонтажа. Если у вас возникли сложности или сомнения относительно самостоятельной замены синхронизатора, лучше не рисковать, и доверить работу специалистам. Мероприятие ответственное и достаточно сложное. Местами лучше пользоваться специальными инструментами. Ту же крепёжную гайку, затянутую с огромным моментом, раскрутить могут не все. Плюс её потребуется с таким же моментом затягивать заново. А здесь без динамометрического ключа хорошего качества и достаточной мощности не обойтись.

Профилактические мероприятия

Синхронизаторы не относятся к категории механизмов, которые с завидной регулярностью выходят из строя и требуют постоянного внимания, ремонта или замены.

Но если учитывать тот факт, что процедура замены достаточно трудоёмкая, требует определённых навыков от автовладельца, либо же дополнительных финансовых затрат на оплату услуг специалистов автосервиса, более правильным решением будет продление срока службы узла.

Чтобы синхронизатор работал долго, качественно и эффективно, требуется соблюдать буквально несколько простых правил.

  1. Минимальная эксплуатация в агрессивных условиях. Постарайтесь отказаться от агрессивной манеры вождения. Не пытайтесь постоянно резко стартовать, тормозить и опять разгоняться, буквально разрывая при этом коробку передач. Плавное и умеренное управление КПП позволит значительно увеличить и без того достаточно внушительный ресурс синхронизаторов.
  2. Не забывайте о правильном соответствии между скоростью движения автотранспортного средства и выбранной передачей на селекторе КПП. Для каждой передачи есть свой определённый и оптимальный диапазон скорости перемещения машины. Этому учат ещё на первых уроках в автошколе. И такую информацию следует запоминать очень внимательно. Если скорость будет соответствовать передаче, а передача скорости, тогда на синхронизаторы начнёт воздействовать оптимальная нагрузка. Это положительно скажется на ресурсе механизма, и заметно отсрочит замену синхронизатора на вашем автомобиле.
  3. В соответствии с регламентом и требованиями автопроизводителя проводите техническое обслуживание коробки. Зачастую рекомендации в инструкциях к иномаркам не совсем совпадают с реальными пробегами и сроками применительно к нашим условиям эксплуатации. Потому от указанного в руководстве пробега до замены того же трансмиссионного масла или иных расходников обычно советуют отнимать 15-25%. То есть проводить техобслуживание нужно немного раньше. Всё зависит от того, в каких условиях эксплуатируется машина и коробка в частности.
  4. Используйте подходящие масла для коробки. Тут опять же нужно смотреть в руководство по эксплуатации. Производители чётко прописывают, какие трансмиссионные масла следует использовать для вашей конкретной коробки передач. От этих рекомендаций лучше не отходить. Если не удаётся найти или приобрести масла указанной марки с рекомендуемыми характеристиками, ищите среди других изготовителей рабочих жидкостей составы, максимально приближенные к свойствам оригинального масла.
  5. Прежде чем переключить передачу, не забывайте до конца выжимать педаль сцепления. Некоторые водители несколько не додавливают педаль до упора, в результате чего на синхронизатор начинает воздействовать большая нагрузка, ускоряется износ. Регулярная подобная работа педалью сцепления приведёт к поломкам и неисправностям. Соблюдая это простое правило, удастся избежать лишних проблем.

Синхронизатор действительно является полезным и эффективным дополнением в конструкции современных механических и роботизированных коробок передач.

Подавляющее большинство КПП, устанавливаемых на современные автомобили, являются синхронизированными. Это вполне оправданный и правильный ход со стороны производителей. Узел обладает широкими функциональными возможностями, параллельно продлевая срок службы всей коробки.

Gear synchro – x-engineer.org

Автомобили, оснащенные механическими коробками передач (MT), автоматизированными механическими коробками передач (AMT) и коробками передач с двойным сцеплением (DCT), требуют синхронизаторов передач  , чтобы выполнять переключение передач (вверх или вниз). Синхронизатор предназначен для синхронизации скоростей входного и выходного валов коробки передач. при переключении передач, до включения повышающей передачи.

В коробке передач синхронизаторы расположены между двумя соседними шестернями. Например, передачи 1-2 имеют один и тот же механизм синхронизации, 3-4 другой и такой же для 5-6. Установка синхронизатора для передачи заднего хода (R) не является обязательной, поскольку для включения R автомобиль должен быть остановлен (если он движется), а скорость выходного вала будет равна нулю. Тем не менее, есть механические коробки передач, которые имеют синхронизаторы передач и для задней передачи.

Изображение: Синхронизаторы в механической коробке передач (коробка передач)
Предоставлено: Getrag

Чтобы лучше понять основные компоненты трансмиссии и как они работают, прочитайте статью Как работает механическая коробка передач.

Зачем нужны синхронизаторы?

Предположим, что для заданной механической коробки передач мы хотим переключиться с 1-й -й передачи на 2-ю -ю передачу. Параметры передачи следующие:

\[ \begin{split}
n_{IN} = 3500 \text{ об/мин}\\
i_{1} = 3,4\\
i_{2} = 2,5\\
i_{0} = 3,1\\
n_{OUT} = \text{ ?}
\end{split} \]

где:

n IN [об/мин] – частота вращения входного вала
n OUT [об/мин] – частота вращения выходного вала
i 1 [-] – передаточное число , 1 st шестерня
i 2 [-] – передаточное число, 2 nd шестерня
i 0 [-] – передаточное число главной передачи (дифференциал)

Стартовая передача 1 ст шестерня. Когда водитель хочет включить 2-ю -ю передачу, сначала ему необходимо отсоединить двигатель от трансмиссии, используя педаль сцепления. Это необходимо, потому что переключение передачи в трансмиссии с простыми зубчатыми механизмами, которые находятся в постоянном зацеплении (зацеплении), не может быть выполнено, пока крутящий момент двигателя передается через шестерни, поэтому сцепление должно быть разомкнуто.

Для перехода с 1-й -й передачи на 2-ю -ю передачу трансмиссия должна на короткое время перейти в нейтральное положение.

На изображении ниже мы можем визуализировать поток мощности двигателя через шестерни 1 st и 2 nd . Для каждой передачи мы собираемся рассчитать скорость входного и выходного валов.

Изображение: процесс переключения передач (1-2)

Когда включена передача 1 st , скорость выходного вала составляет:

\[n_{OUT} = \frac{n_{IN}}{i_ {1} \cdot i_{0}} = 332 \text{ об/мин}\]

Если мы хотим включить передачу 2 и , скорость входного вала должна стать:

\[n_{IN} = n_{OUT} \cdot i_{2} \cdot i_{0} = 2573 \text{ об/мин}\]

Это означает, что входной вал должен быть замедлен с 3500 об/мин до 2573 об/мин. Если необходимо было выполнить понижение передачи 2-1, входной вал должен был быть ускорен с 2573 об/мин до 3500 об/мин. Это когда синхронизаторы вступают в игру.

Синхронизатор действует как фрикционная муфта и замедляет (переключение на более высокую передачу) или ускоряет (переключение на более низкую передачу) первичный вал, чтобы согласовать скорость для следующей передачи.

Изображение: Схема коробки передач с названиями компонентов

Как работает синхронизатор?

Синхронизаторы необходимы для переключения передач в механических коробках передач. Их цель — согласовать (отрегулировать) скорость входного вала (шестерни и вторичной массы сцепления) с выходным валом (колесом).

Существует несколько типов синхронизаторов, используемых для механических коробок передач. Наиболее распространена классификация по количеству трущихся элементов (конусов трения). Поэтому имеем:

  • single-cone synchronizer
  • dual-cone synchronizer
  • triple-cone synchronizer

Image: Simple cone synchronizer
Credit: VW

  1. gear wheel
  2. synchronizer ring
  3. ring spring
  4. locking element (strut )
  5. ступица синхронизатора (корпус)
  6. скользящая втулка

Изображение: синхронизатор в сборе
Предоставлено: VW

Шестерня (1) установлена ​​на вторичном валу коробки передач. Он может вращаться относительно вала (радиальное движение), но не может совершать осевое движение вдоль вала. Между шестерней и валом обычно установлены игольчатые подшипники, облегчающие вращение.

Шестерня имеет встроенную муфту сцепления с фрикционным конусом. Шестерня сцепления состоит из стопорного зубчатого зацепления и фрикционного конуса. Он называется муфтой , потому что он играет роль муфты, плавно зацепляя предстоящее зубчатое колесо.

Шестерня сцепления согласовывает скорость шестерни со скоростью ступицы синхронизатора. Монтаж на зубчатое колесо осуществляется запрессовкой или лазерной сваркой. Когда шестерня включена, внешние зубья (с фаской на обеих сторонах зубьев) сцепятся с фаской на внутренних зубьях втулки переключения.

Изображение: Шестерня

Кольцо синхронизатора (2), также называемое блокирующим кольцом, стопорным кольцом или фрикционным кольцом, имеет коническую поверхность, которая соприкасается с фрикционным конусом шестерни. Кольцо синхронизатора предназначено для создания момента трения для замедления/ускорения входного вала во время переключения передач.

Кольцо синхронизатора вместе с фрикционным конусом зубчатого колеса образуют «коническую муфту», которая может включаться и отключаться путем скольжения.

Внутренняя поверхность кольца синхронизатора имеет резьбу или канавки для предотвращения образования любой гидродинамической масляной пленки. Если между кольцом синхронизатора и фрикционным конусом зубчатого колеса образуется масляная пленка, для синхронизации скоростей валов потребуется большее толкающее усилие и большее время.

Изображение: Кольцо синхронизатора

Стопорные элементы (4), также называемые шпонками синхронизатора, центральным механизмом, шпонками или крылышками, расположены по окружности корпуса синхронизатора в специальных пазах между втулкой синхронизатора и синхронизатором. центр.

Стопорные элементы вращаются вместе со ступицей синхронизатора (5) и могут перемещаться в осевом направлении относительно скользящей муфты (6). Стойки используются для предварительной синхронизации, а это означает, что они создают нагрузку на кольцо синхронизатора для выполнения процесса синхронизации.

В нейтральном положении (передача не выбрана) стопорные элементы удерживают скользящую втулку в центральном положении на ступице синхронизатора между обеими шестернями. Обычно узел синхронизатора имеет 3 фиксирующих элемента, расположенных под углом 120°. В случае больших синхронизаторов может быть 4 фиксирующих элемента, распределенных по 90°.

Изображение: Ступица синхронизатора

Ступица синхронизатора (5) установлена ​​на вторичном валу, жестко соединена шлицем. Он может двигаться в осевом направлении, но не вращаться относительно вала. Он содержит специальные канавки, в которых будут размещаться фиксирующие элементы.

Кольцевые пружины (3) расположены с каждой стороны ступицы синхронизатора и предназначены для удержания шпонок стойки в предусмотренных канавках.

Скользящая втулка (6), также называемая муфтой переключения передач, муфтой синхронизатора или муфтой муфты, имеет на внешней стороне радиальную канавку для вилки переключения передач. Внутренняя часть имеет шлицы, которые находятся в постоянном зацеплении с внешними шлицами ступицы синхронизатора. Скользящая втулка может перемещаться только в осевом направлении (влево-вправо) из нейтрального положения в зацепленное положение.

Изображение: Скользящая втулка

Фазы синхронизации шестерни

Процесс синхронизации , когда скользящая втулка начинается из нейтрального положения (центральное) и заканчивается полным зацеплением шестерни, может быть описан в пять этапов, как показано на картинка ниже.

Процесс синхронизации будет описан параметрами:

F [Н] – усилие переключения передач
Δω [рад/с] – разница скоростей между шестерней и ступицей синхронизатора
T f [Нм] – момент трения между кольцом синхронизатора и фрикционным конусом
T i [Нм] – момент инерции первичного вала, шестерни и вторичной массы сцепления

Изображение: Процесс синхронизации переключения передач

Фаза 1: Асинхронизация

Перед началом процесса переключения скользящая муфта удерживается в среднем положении стопорными элементами. Сила переключения передач создает осевое перемещение скользящей втулки, которая толкает вперед кольцо синхронизатора к фрикционному коническому зубчатому колесу. Разница скоростей между зубчатым колесом и кольцом синхронизатора вызывает вращение кольца синхронизатора.

Этап 2: Синхронизация (блокировка)

Это основной этап синхронизации скорости. Скользящая втулка проталкивается дальше, что приводит в соприкосновение внутренние шлицы (зубья) скользящей втулки и зубья кольца синхронизатора. На этом этапе момент трения начинает противодействовать моменту инерции, и разница скоростей начинает уменьшаться.

Фаза 3: Разблокировка (повернуть назад кольцо синхронизатора)

Усилие переключения передач удерживается на кольце синхронизатора за счет фиксирующих элементов и скользящей втулки. Когда синхронизация скоростей достигнута, сила трения уменьшается до нуля, а кольцо синхронизатора немного поворачивается назад.

Этап 4: зацепление (поворот ступицы синхронизатора)

Скользящая втулка проходит через зубья кольца синхронизатора и входит в контакт с блокирующим зубчатым зацеплением шестерни.

Фаза 5: Зацепление (блокировка шестерни)

Скользящая втулка полностью вошла в стопорное зубчатое зацепление шестерни. Задние конусы на зубьях скользящей втулки и стопорные зубья зубчатого колеса предотвращают разъединение под нагрузкой.

Контроль положения включения передач

В автоматизированных механических коробках передач (АМТ) и коробках передач с двойным сцеплением (DCT) положение вилки переключения (скользящей втулки) контролируется датчиками положения.

На изображении ниже видно, как положение скользящей муфты меняется в процессе переключения передач. Позиция разделена на пять этапов:

    1. Подход синхронизатора
    2. Синхронизация
    3. Объединение передач
    4. Gear Hold
    5. Gear Relul

Image: Avationshift Control. втулка) начинается из центрального положения и начинает двигаться к кольцу синхронизатора. Когда положение вилки переключения остается постоянным (P 1 ) после перемещения, это означает, что кольцо синхронизатора ударилось о фрикционный конус шестерни.

На этом этапе контролируется положение (скорость) вилки переключения, а не усилие переключения передач (толкающее усилие). Усилие переключения обычно составляет около 60–120 Н.

После обнаружения контакта между кольцом синхронизатора и фрикционным конусом начинается фаза Синхронизация  (B). В этой фазе положение вилки переключения постоянно, а толкающее усилие постепенно увеличивается. Из-за момента трения входной вал начинает тормозить. Окончание этой фазы наступает, когда скорость входного и выходного валов синхронизируется (стр. 9).0032 2 ).

Фаза включения передачи  (C) начинается, когда вилка переключения снова начинает двигаться. На этом этапе скользящая втулка проходит через кольцо синхронизатора и начинает зацепляться с блокирующим зацеплением зубчатого колеса. Фаза заканчивается, когда скользящая втулка достигает конечного положения и больше не может двигаться вперед.

На этом этапе очень важно точно контролировать положение (скорость) вилки переключения. Если он движется слишком быстро, в конце хода он врежется в зубчатое колесо, что вызовет шум включения шестерни и возможное механическое повреждение.

После того, как вилка переключения достигает конечного положения, начинается фаза Удержание передачи  (D). На этом этапе на вилку переключения передач в течение определенного времени воздействует высокое усилие, чтобы обеспечить полное включение передачи.

В фазе Расслабление шестерни  (E) усилие на вилку переключения больше не действует, и шестерня удерживается на месте благодаря механической блокировке скользящей муфты зубчатым колесом.

Общая длина хода вилки переключения может составлять около 8–12 мм, точка синхронизации начинается от 3–6 мм.

Сила переключения передач (кредит: Hoerbiger)

Размер и расчет механизма синхронизатора должны учитывать различные параметры, такие как:

  • монтажное пространство
  • механическая инерция для синхронизации
  • разница скоростей вала для синхронизации
  • передаваемый крутящий момент
  • свойства трансмиссионного масла
  • параметры качества переключения передач
    • время синхронизации
    • ход вилки переключения
    • Максимальная сила сдвига
    • 40104
    • . вместимость скользящей втулки, ступицы и зубчатого зацепления шестерни
    • вместимость фрикционного материала (скорость скольжения, поверхностное давление, сила трения, работа трения)
    • тепловыделение через масло, синхронизирующее кольцо и фрикционный конус
    • трансмиссионное масло (вязкость и термическая стабильность)

    сдвиговое усилие на скользящей втулке F a [Н] рассчитывается по формуле ( источник: Hoerbiger):

    \[F_{a} = \frac{2 \cdot \sin{\alpha} \cdot J \cdot \Delta \omega}{n_{c} \cdot \mu \cdot d_{m } \cdot T_{F}}\]

    где:

    α [рад] – угол конуса трения
    Дж [кг·м 2 ] – инерция массы первичного вала, шестерен и вторичной муфты
    Δω [рад/с] – разность скоростей синхронизации
    n c [-] – количество конусов
    μ [-] – коэффициент трения конуса трения
    d m [м] – средний диаметр конуса трения
    T F [Нм] – момент трения

    Уменьшение усилия смещения на втулке может быть достигнуто за счет:

    • увеличения диаметра среднего конуса трения
    • увеличение количества фрикционных конусов (с использованием двухконусных или трехконусных синхронизаторов)
    • увеличение коэффициента трения
    • уменьшение угла конуса трения

    Время переключения передач

    Процесс переключения передач одинаков для повышения и понижения передачи, но время переключения различно. При переключении на повышенную передачу скорость входного вала должна уменьшаться. Поскольку между движущимися частями есть потери на трение, торможение вала будет более быстрым.

    С другой стороны, при переключении на пониженную передачу необходимо ускорить первичный вал. Точно так же будут действовать те же потери на трение, которые пытаются затормозить вал. Следовательно, для синхронизации валов при переключении на пониженную передачу требуется более высокий момент трения и более длительное время синхронизации.

    Общее время переключения механической коробки передач в основном зависит от водителя и может составлять от 0,5 до 2,0 с. Некоторые высокопроизводительные коробки передач с двойным сцеплением (DCT) могут достигать времени переключения около 10 мс.

    Двухконусный синхронизатор

    Двухконусный синхронизатор обычно используется для передач 1 st и 2 nd . Механизм двухконусного синхронизатора представляет собой компактное устройство, способное зацепляться в тяжелых условиях. Механизм синхронизатора сокращает время зацепления (переключения передач) и улучшает работу (для включения передачи требуется меньшее усилие). Двухконусный механизм синхронизации включает синхронизирующее кольцо, двойной конус и внутренний конус.

    Изображение: синхронизатор с двойным конусом (полный набор)

    1. Gear Wheel
    2. Блокировка зубчатых зубцов
    3. Иглетов.

    Пример механической коробки передач с различными механизмами синхронизации

    Коробка передач Getrag Manualshift 6MTI550.

    Изображение: Механическая коробка передач Getrag 6MTI550

    Основные преимущества :

    • Модульная система для приложений со средним и высоким крутящим моментом, опционально 7 th возможная скорость
    • Высокий крутящий момент при малом весе
    • Готов к системе старт-стоп (обнаружение передачи)
    • Гибкая передача разброс коэффициентов

    Основные характеристики :

    0 3 Наблюдение
    • концепция постоянного редуктора на выходном валу0105
    • полный привод возможно применение
    • 7 й скорость возможна
  • Параметр Значение
    Максимальный входной крутящий момент [NM] 550 Высокий крутящий момент
    Вес [кг] 44 Сухо 630 для длины сцепления 156 мм
    Передаточное число [-] 5,5 – 6,9 > 7 также возможно
    Межосевое расстояние [мм] 404 89387
    Synchronization mechanism
    1 st and 2 nd gear triple-cone
    3 rd gear dual-cone
    4 th to 6 th и передача заднего хода одноконусная
    Прочее

    Источник: Getrag .

    Не забудьте поставить лайк, поделиться и подписаться!

    Общие сведения о синхронизации — дайджест передачи

    • Автор : Майк Вайнберг, ответственный редактор

    Одной из наименее понятных и чаще всего неправильно диагностируемых жалоб/проблем с ручным переключением передач и раздаточных коробок является синхронизация.

    Нажмите здесь, чтобы узнать больше

    В механической коробке передач или трансмиссии ряд валов и шестерен движутся с разной скоростью из-за количества передаточных чисел в коробке передач. Чтобы переключать передачи без столкновения, трансмиссия имеет ряд узлов синхронизаторов, которые включают передачу желаемой скорости по указанию водителя.

    Шестерни скорости находятся в постоянном зацеплении с противоположными шестернями, которые определяют передаточное число для каждой скорости, которую может выбрать водитель. Шестерни скорости свободно вращаются на валах, на которых они установлены, а узлы синхронизаторов насажены на валы, на которых они установлены. Поскольку синхронизация означает, что несколько вещей происходят одновременно, конструкция сделана таким образом, чтобы выбранная ступенчатая шестерня двигалась с той же скоростью, что и узел вала и синхронизатора. Когда скорости валов равны, можно зацепить скользящую муфту узла синхронизатора с выбранной шестерней без скрежета или столкновения. Этот процесс должен работать как при переключении на повышенную, так и на пониженную передачу и координировать различные скорости вала с точным синхронизацией при различных открытиях дроссельной заслонки.

    Многие условия влияют на работу синхронизаторов и могут вызвать проблемы с переключением передач. Многие из этих условий являются внешними по отношению к передаче. Чтобы правильно диагностировать и ремонтировать механическую коробку передач, технический специалист должен понимать как теорию работы, так и то, как детали взаимодействуют друг с другом, чтобы произвести качественный конечный продукт с плавным переключением передач для клиента.

    Понимание теории:

    Хотя существует множество различных конструкций синхронизаторов, все они работают одинаково. Узел синхронизатора состоит из ступицы с внутренними шлицами, которые соединяют его с валом, на котором он вращается. Ступица имеет набор внешних шлицов, которые сопрягаются со шлицами внутри скользящей втулки, которая может перемещаться вперед и назад по ступице. На обоих концах скользящей втулки находятся соответствующие наборы зацепляющих зубьев, которые входят в зацепление с шестерней. Каждая скользящая втулка может сочетаться с двумя передачами: 1-й и 2-й, 3-й и 4-й, 5-й и 6-й передачами, а также одной для передачи заднего хода во многих трансмиссиях последних моделей.

    Узел синхронизатора также имеет прорези в ступице для шпонок (распорок, собачек, нажимных элементов и т. д.), которые перемещаются в том же направлении, что и скользящая втулка. Эти шпонки входят в прорези, выточенные в синхронизаторе или блокирующем кольце, которое двигается по обработанному конусу, являющемуся частью скоростной шестерни. За конусом скоростной шестерни находится набор механически обработанных зацепляющих зубьев, которые сопрягаются с зацепляющими зубьями на обоих концах ползуна. Кольцо синхронизатора также имеет набор зацепляющих зубьев, которые совпадают с зубьями на скользящей втулке и ступенчатой ​​шестерне.

    Механизм синхронизированного переключения относительно прост. Водитель выбирает передачу с помощью рычага переключения передач, который, в свою очередь, перемещает вилку переключения, соединенную со скользящей втулкой синхронизатора. По мере того, как втулка движется к ступенчатой ​​шестерне, шпонки перемещают кольцо синхронизатора в контакт с конусом ступенчатой ​​шестерни. Кольцо синхронизатора представляет собой мокрую муфту, которая обеспечивает трение о конус ступенчатой ​​шестерни для замедления или ускорения ступенчатой ​​шестерни в соответствии со скоростью вала, на котором вращается узел синхронизатора.

    В этот момент кольцо синхронизатора не позволит скользящей муфте войти в зацепление с зубьями шестерни скорости до тех пор, пока скорость вала и скорость шестерни не совпадут (синхронизируются). Когда скорость вала сравняется со скоростью шестерни, трение на блокирующем или синхронизирующем кольце ослабевает, а внешние зубья кольца выстраиваются на одной линии со скользящей втулкой и позволяют ей перемещаться до полного зацепления с зубьями шестерни, завершая переключение. тихо. Очевидно, что если какой-либо из этих компонентов изношен или поврежден, этот процесс синхронизации не будет работать, и произойдет стирание шестерен.

    В рамках обсуждения теории настало время понять взаимосвязь передаточного числа и скорости вала с процессом переключения передач. Используя для этого примера переключение с 1-й на 2-ю и чтобы упростить расчеты, предположим, что передаточное число 1-й передачи равно 2-1, а передаточное число 2-й передачи равно 1,5-1. Водитель разгоняется до 4000 об/мин и начинает смену. В этот момент главный вал вращается со скоростью 2000 об/мин (4000 разделить на 2 = 2000), а ведущие колеса приводят главный вал в движение. В этот момент шестерня 2-й передачи вращается со скоростью 2667 об/мин (4000, деленное на 1,5). Скорость диска сцепления должна упасть до 3000 об/мин, чтобы 2-я передача достигла той же скорости, что и главный вал и блок синхронизатора (3000, деленное на 1,5). 1,5 = 2000). В этот момент сдвиг может быть завершен без коллизии.

    Здесь вы можете начать осознавать внешние условия, которые могут создать проблемы с переключением, когда плохое выжатое сцепление или водитель, спешащий с переключением, может повлиять на результат, изменив время переключения. Неправильно отрегулированное или поврежденное сцепление, которое не будет должным образом отключать поток мощности от двигателя к первичному валу трансмиссии, быстро ухудшит фрикционную способность колец синхронизатора и вскоре приведет к необратимому повреждению синхронизаторов и зубчатой ​​передачи.

    Конструкция с кольцом синхронизатора:

    Кольцо синхронизатора или блокирующее кольцо действует как фрикционное устройство почти так же, как тормоза и сцепления. Эти компоненты посредством трения и давления превращают движение (кинетическую энергию) в тепло и замедляют или ускоряют движущийся вал.

    Старые конструкции колец синхронизатора изготавливаются из латуни или бронзы и имеют острую резьбу, проходящую по внутреннему диаметру кольца, с рядом канавок, проходящих перпендикулярно резьбе. Острая резьба предназначена для разрезания масляной пленки на конусе скоростной шестерни, а прорези помогают выпускать смазку за счет центробежной силы, гарантируя, что кольцо может захватить ступенчатую шестерню, а не скользить по масляной пленке.

    В более поздних конструкциях используются накладки из бумаги (аналогично автоматическим сцеплениям), углеродного волокна и различных металлических сплавов. Все эти материалы обеспечивают лучшую удерживающую способность, чем латунь или бронза. Важным примечанием здесь является то, что все эти конструкции предназначены для работы с определенной трансмиссионной смазкой. Трансмиссионное масло с вязкостью 90, использовавшееся в прошлом, почти исчезло, и его никогда не следует использовать с кольцевыми накладками более поздней конструкции.

    Во-первых, футеровки более поздних конструкций пористые и впитывают смазку, а когда они впитывают 90-веса они никогда полностью не очистятся от высоковязкой жидкости. Само собой разумеется, что чем гуще жидкость, тем выше сопротивление зубчатой ​​передачи, проходящей через нее. Жидкости с высокой вязкостью создают проблемы при холодном переключении и добавляют паразитное сопротивление компонентам, снижая расход топлива.

    Еще одним внешним источником проблем с переключением передач является использование неподходящего смазочного материала. Высокое содержание соединений серы в трансмиссионных маслах воздействует на накладки колец, а вязкость препятствует истощению колец жидкости, вызывая столкновение шестерен. Большинство трансмиссий последних моделей предназначены для работы на ATF или специально разработанных моторных маслах 5W-30 со специальными пакетами присадок, чтобы обеспечить надлежащий коэффициент трения для плавной работы синхронизатора. Удивительно, как много мастерских, стремящихся получить работу прямо за дверью, кладут в трансмиссию любую смазку, не обращая внимания на последствия переключения. Правильная смазка так же важна, как и любой подшипник, уплотнение или шестерня, которые вы будете устанавливать. Неподходящая смазка может вынудить вас разобрать только что восстановленную трансмиссию и заменить только что установленные новые кольца синхронизатора.

    Проблема конструкции с кольцами синхронизатора:

    Для латунных или бронзовых колец более старой конструкции в руководствах по обслуживанию приводилась спецификация для измерения резерва кольца синхронизатора, который измерялся путем размещения кольца на конусе шестерни и использования щуп для измерения дорожного просвета кольца от зубьев синхронизатора на ступенчатой ​​шестерне. Проблема в том, что не было возможности измерить целостность конуса на редукторе. Конус сужается, и в обычном магазине невозможно измерить его, даже если он имеет надлежащие характеристики от печати.

    Правильный и простой способ измерить качество конусности скоростной шестерни – это воронение макета машиниста или хороший несмываемый войлочный маркер. Очистите и обезжирьте все конусы на шестернях скорости и покройте конусы макетной краской или войлочным маркером. Затем наденьте на конус новое кольцо и с усилием закрутите его. Снимите кольцо и посмотрите на узор, который он оставил на конусе. Это должна быть постоянная отметка вокруг конуса от верха до низа кольца. Если есть пропуски или просто тонкая полоса вокруг конуса шестерни вверху или внизу, шестерню скорости необходимо заменить. Это то, что необходимо сделать в процессе демонтажа и восстановления, прежде чем указывать цену. Все, на что вы не назначите цену, станет вашей проблемой после того, как клиент согласится на «окончательную» цену.

    Новые конструкции колец имеют двух- и трехконусные кольца синхронизатора. Наличие фрикционных поверхностей как внутри, так и снаружи кольца удваивает или утраивает площадь поверхности, доступной для работы кольца, без увеличения диаметров шестерен и синхронизаторов. Этот тип установки распространен сегодня, и измерить резерв синхронизатора щупом практически невозможно. Единственный способ убедиться, что у вас есть полное рабочее покрытие конусов, — это использовать метод красителя или фломастера. Многие накладки из спеченного сплава на кольцах последних моделей имеют агрессивный коэффициент трения и будут изнашивать конусы скоростей.

    Диагностика и отделение проблем с кольцами синхронизатора от других причин:

    Здесь начинается наибольшая путаница при диагностике проблем с переключением передач. Кольца синхронизатора могут вызвать скрежет и столкновение шестерен. Они также могут вызвать «блокировку» переключения, когда переключение не может быть завершено и буквально блокируется от дальнейшего движения рычага переключения передач. Кольцо никогда не вызовет рывков при переключении передач и во многих случаях не будет причиной заеданий и заеданий при переключении передач. Для быстрого устранения внешних причин проблем с переключением передач необходимо произвести ряд проверок компонентов карданной передачи. Заправлено ли в агрегат правильное масло? Смазка в хорошем состоянии или сгорела до неузнаваемости? Правильно ли отрегулировано сцепление для полного выключения, и правильно ли работают гидравлика или выжимной рычаг?

    Быстрая и простая проверка настройки сцепления — поддомкратить автомобиль, чтобы оторвать ведущие колеса от пола, или поставить автомобиль на подъемник, когда все четыре колеса оторваны от земли.

    Теперь запустите двигатель и пройдите все передачи при свободном вращении ведущих колес. Если трансмиссия теперь переключается лучше с небольшим или нулевым столкновением передач, проблема связана с выжимом сцепления. Это, однако, не означает, что клиент не причинил внутреннему повреждению агрегата, управляя автомобилем с неисправным выпуском в течение неизвестного времени. Также важно отметить, что плохое выключение сцепления не всегда проявляется на всех передачах. Многие проблемы с 3-4 переключением связаны со сцеплением, но технический специалист ошибочно полагает, что плохое сцепление проявляется на всех передачах.

    Другим признаком проблем со сцеплением являются срезанные шпонки синхронизатора, обычно на синхронизаторе 3-4 передачи. Шпонки разлетелись на куски, потому что муфта не отсоединила первичный вал от двигателя. Это может быть вызвано тем, что сцепление не отпускается должным образом, или водителем, который либо торопится с переключением передач, либо «переключает под нагрузкой» без сцепления, либо не отпускает газ при переключении передач.

    Переключение передач определяется как переключение рычага переключения передач на нужную передачу, а затем немедленное выключение передачи при включении сцепления или при изменении положения дроссельной заслонки во время движения. Кольцо синхронизатора НИКАКОГО отношения к выскакиванию шестерни не имеет. Причинами являются избыточный осевой люфт в блоке, позволяющий валам смещать ползунок с шестерни, изношенные или поврежденные вилки переключения или рычажный механизм, изношенный или поврежденный задний конус на шестерне или скользящей втулке, изношенные или поврежденные опоры силового агрегата, погнутые или несбалансированные карданные валы, или неправильно отрегулированные переключатели или тросы.

    Зазубренные, скрежещущие переключения или заблокированные переключения являются результатом изношенных колец синхронизатора, поврежденных зубьев зацепления на ползунке или редукторе, чрезмерном осевом люфте на шестерне или валу, изношенных или неправильно отрегулированных рычагах или вилках переключения, плохом выжиме сцепления, водитель переключает передачи на слишком высоких оборотах двигателя для компонентов трансмиссии, пытается ускорить переключение передач или не использует сцепление.

    Как работает синхронизатор: как работает и почему ломается

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх