Необычное сочетание тени и света: Цветовая гамма сада — Ландшафтный дизайн

Цветовая гамма сада — Ландшафтный дизайн

Материал предоставлен Ландшафтным центром «НАЯ»

Волшебство сада заключается не только в его красоте, но и в изменчивости облика, в смене картин, впечатлений и ассоциаций, которые зависят не только от погоды, времени суток или сезона, но и от внутреннего состояния наблюдателя. Не удивительно, что в ясный солнечный день сад кажется радостным, полным жизненных сил. Сочетание зеленой листвы с яркими красками садовых цветов, залитая потоками солнца сочная трава на газонах способны отогнать грустные мысли и вселить в человека самые радужные надежды. И, наоборот, в пасмурный холодный день, когда тяжелое небо нависает над вершинами деревьев, отражаясь серым покрывалом в зеркале пруда, — все вокруг становится печальным.


Сад, где преобладает желто-оранжевая гамма, даже в самый пасмурный день будет напоминать о солнце и тепле. Яркие клумбы, миксбордеры, рабатки, составленные из сочетания многолетних и однолетних растений с цветками разнообразных теплых оттенков, декоративные деревья и кустарники с пестрой и золотистой листвой и хвоей — главные акценты «солнечного» сада. В таком саду будут очень уместны солнечные часы, устроенные необычным образом. Цифры у таких часов заменяют группы желтых цветов высаженных по кругу. Лучше всего подойдут сортовые бархатцы высотою до 20 см. Садовая мебель сделанная из натурального дерева светлого цвета хорошо соответствует общему настроению сада.


Белый сад изыскан, немного сдержан, чуть печален. Это сад-воспоминание. Он успокаивает и навевает меланхолию. Сочетание зеленого с белым, на первый взгляд, может показаться монотонным. Но это не так уже потому, что ассортимент растений настолько обширен, что в окраске их листьев и цветков можно найти самые разнообразные оттенки белого с примесью салатного, розового, кремового.


Голубой сад подобен сказочной стране. Холодноватая таинственность, некоторая загадочность и даже отрешенность — преобладающий мотив такого сада. К сожалению, в средней полосе России древесных растений с цветками чисто синих или голубых тонов практически нет. Пожалуй, только цветение отдельных сортов сирени, рододендронов и не вполне зимостойкой буддлеи можно назвать лилово-фиолетовым, но никак не синим. Таким образом, облик голубого сада формируют цветники, которые должны быть продуманы очень тщательно. Излишек сине-фиолетового цвета может создать мрачное впечатление. Поэтому желательно «разбавить» холодную гамму белым цветом или нежными пастельными тонами.


Совсем другое настроение у розового сада. Безмятежность розового цвета близка детям и влюбленным. В теплых розово-малиновых тонах уютно и по-домашнему спокойно. Возможно, розовый сад не так изыскан, быть может, в нем нет загадки, но зато сколько очаровательной прелести и нежности! Такой сад создает идеальную обстановку для отдыха в кругу семьи, заставляя на время забыть о городской суете.

Светлые тени

: 29 Дек 2010 , Геомотор – двигатель катастроф , том 36, №6

Яркий ореол и радуга возникают не только вокруг солнца и луны или искусственных источников света. Эти явления порой можно увидеть даже вокруг собственной тени, что автор демонстрирует, используя фотографии, сделанные с земли, из окна авиалайнера и с борта космического корабля. Наблюдаемые явления обусловлены рассеянием световых лучей.

Характер взаимодействия светового излучения с частицами примесей в атмосфере существенно зависит от их размера. На микрочастицах, диаметр которых много меньше длины волны лучей, рассеяние света происходит во всех направлениях почти равномерно. Но при увеличении размера частиц угловое распределение интенсивности рассеянных лучей становится несимметричным.

Предела размеру частицы, на которой происходит рассеяние световых волн, не существует. Более того, количество рассеянных лучей пропорционально площади её поперечного сечения. Лучи, рассеянные на большом предмете, независимо от его формы фокусируются преимущественно в узком конусе под небольшим углом к исходному их направлению, чем и объясняется эффект образования яркого белого кольца вокруг тени самолёта или воздушного шара, отбрасываемой на плотные облака

Многие научные статьи изобилуют формулами, которыми авторы иногда неоправданно усложняют свой текст, хотя бывает полезно сначала объяснить простыми словами, в чем состоит идея публикации. Кстати, А. Эйнштейн утверждал, что нет такой физической идеи, которую нельзя было бы объяснить без формул (впрочем, именно его некоторые идеи без формул понять трудно). В предлагаемой статье тени и свет, свойства которых так привычны и, казалось бы, понятны каждому с детства, предстают сложнейшим (но объясняемым без формул) физическим явлением, а иллюстрацией их необычности оказываются тени самолетов на облаках и их ореолы.

Прямолинейность распространения света ученым античности представлялась очевидной. Эмпедокл (V в. до н.э.) и Евклид (III в. до н.э.) описывали оптические явления, включая прямолинейность и даже преломление лучей света. Но античные философы не могли даже отдаленно представить себе сложность задачи, за которую так отважно взялись. Некоторые проблемы рассеяния света материальными телами аналитически не решены до сих пор, хотя построены великолепные, но весьма сложные теории. Фундаментальный труд «Основы оптики» Нобелевского лауреата М. Борна и Э. Вольфа, изданный в 1968 г.

и переведенный на русский язык в 1973 г., содержит 700 страниц, обильно усеянных сложнейшими формулами. Неспециалисту здесь делать нечего, но объяснить особенности рассеяния света, не прибегая к анализу, трудно. Возвращаясь к прямолинейному лучу света, можно напомнить, что он распространяется прямолинейно лишь в вакууме, не возмущенном гравитацией массивных объектов, или в однородной среде. Но если среда неоднородна, луч отклоняется в сторону большей плотности. Таких подробностей наши предки не знали, но могли заподозрить это в любые времена, любуясь сплющенным диском Солнца на восходе и закате. Только в XVII в., благодаря новым теоретическим и экспериментальным работам Р. Декарта, Г. Галилея и других ученых началось стремительное развитие геометрической оптики. Много важнейших работ было выполнено в XVII—XVIII вв., а более современное развитие геометрическая оптика получила в XIX и начале XX вв.

Однако с укреплением позиций волновой теории и развитием математических методов анализа все более очевидной становилась крайняя сложность процессов рассеяния света на малых и больших препятствиях.

Ореол вокруг тени

Одним из первых, кто понял, как устроен край тени, образующейся при падении света на границу плоскости, стал выдающийся немецкий физик Г. Кирхгофф. Он исходил из представлений о свете как об электромагнитных колебаниях крайне высокой частоты. Кирхгофф установил, что переход на краю тени, в очень узкой зоне, происходит плавно, да еще и с затухающими периодическими колебаниями.

Впрочем, к процессу образования тени ученые обращались задолго до Кирхгоффа. В начале XIX в. А. Френель рассматривал явление дифракции – небольшие отклонения от прямолинейности луча. Последователями, на основе его теории, было предсказано поразительное явление, которое затем экспериментально подтвердил Д. Араго: вокруг удаленной тени от крупного предмета появляется светлое пятно. Пятно плавно ослабевает от центра, окружая тень ярким ореолом. Например, яркий ореол появляется вокруг скользящей по земле тени от высоко летящего воздушного шара.

Вот только заметить его гораздо легче из гондолы воздушного шара, чем с земли. Или с самолета: в солнечную погоду тень самолета постоянно окружена ярким ореолом, который хорошо заметен на облаках, особенно когда самолет летит еще не слишком высоко. Наиболее наблюдательные авиапутешественники часто любуются этим зрелищем. Впрочем, при благоприятных атмосферных услов­иях ореол, окружающий тень, можно увидеть и с высоты около 10 км, где обычно проходят трассы воздушных судов.

Рассеяние света в атмосфере – это то, что происходит вокруг нас постоянно. Мельчайшие капли воды в облаках, в тумане, снежинки и пылинки (все это «аэрозоли») рассеивают свет. В начале XX в. немецкий физик Г. Ми разработал подробную теорию взаимодействия света с мелкими сферическими частицами (например, с жидкими каплями). Оказалось, что с уменьшением размера капель характер взаимодействия с ними света резко изменяется, когда длина окружно­сти сферической частицы становится равной длине волны света. Результат зависит от прозрачности или непрозрачности частицы, ее электрических свойств (проводимости) и показателя преломления среды. Кроме Ми, еще несколько авторов в XX в. в своем анализе пришли к тем же выводам и даже написали книги похожего содержания. Трудности возникали (и сохраняются) с анализом рассеяния света мелкими несферическими частицами. Что же касается ореола, результата взаимодействия света с крупными предметами, размеры которых намного больше длины волны света, теория указала на удивительное, парадоксальное явление: ослабление света производит площадь, которая ровно вдвое больше реального геометрического поперечного сечения большого предмета, создающего тень (например, самолета). Казалось бы, какая может быть дифракция на таком огромном предмете? Но именно дифракция света ответственна за появление ореола вокруг тени воздушного шара или самолета. Вблизи края геометри-ческой тени есть узкая область, где приближения, на которых основана геометрическая оптика, становятся некорректными.

Так теория объясняет и удвоение поглощающей и отражающей площади, и появление светлого ореола.

Рассеяние света на препятствиях – это отклонение прямого пучка лучей под разными углами от первоначального направления. Угловую диаграмму распределения интенсивности рассеянных лучей называют индикатрисой рассеяния.

Наличие многочисленных максиму­мов (лепестков) диаграммы указывает на сложный характер рассеяния

Ореолы вокруг тени наблюдаются и с космических аппаратов. Небольшой астероид Итокава, размерами всего 535 294 209 м, был целью японской космиче­ской миссии «Хаябуса» в 2005 г. Когда 10 ноября 2005 г. аппарат постепенно сближался с астероидом, были сделаны снимки, на которых хорошо заметен небольшой ореол вокруг тени. В этой точке Солнце находилось точно за аппаратом. Но гораздо больший примыкающий светлый район имел отношение не к аппарату «Хаябуса», а к самому Солнцу. Это так называемый эффект оппозиции, когда лучи Солнца заглядывают в бесчисленные мелкие углубления на неровной поверхности небесного тела и освещают их дно и склоны, а наблюдатель смотрит со стороны Солнца.

Каждый знает, как многократно возрастает яркость Луны во время полнолуния, когда Земля оказывается на линии Солнце – Луна. Это и есть эффект оппозиции. Но вернемся к снимкам с самолета.

Цветные кольца

Если авиапутешественнику повезет, он может увидеть еще более интересное явление, когда тень самолета не только окружена ореолом, но и охвачена цветным кольцом, и даже не одним. Чтобы объяснить происхождение таких колец, можно попытаться снова обратиться к теории рассеяния света мелкими частицами, хотя, как будет показано ниже, причина все-таки заключается в другом.

Как уже упоминалось, сам процесс рассеяния света зависит не только от размеров и природы частиц, длины волны падающего света, но и от других его свойств, например поляризации. В простейшем случае, если частицы очень мелкие, направления преимущественного рассеяния света образуют, в зависимости от его поляризации, восьмерку или овал, количество света, рассеянного вперед по направлению луча и назад, одинаково. Но если частицы – более крупные диэлектрические шарики диаметром около 0,1 мм, с длиной окружности по экватору, составляющей, например, восемь длин волн, диаграмма рассеяния (которую называют индикатрисой) выглядит иначе: подавляющая часть падающего света рассеивается вперед. Если наблюдатель будет перемещаться в пло­скости диаграммы, он увидит чередующиеся всплески и уменьшения яркости. То же самое происходит при рассеянии солнечного света на атмосферных аэрозолях. Форма индикатрисы зависит от длины волны, а лучи Солнца на закате (и восходе) проходят сквозь множе­ство локальных неоднородно­стей атмосферы, поэтому часто утром или вечером небо так ярко и неоднородно окрашено. Каждая неоднородность «отвечает» своей диаграммой, своими «лепестками», выделяя тот или иной цвет и яркость. Многочисленные максимумы и минимумы распределения интенсивности рассеянных лучей по углам отклонения показывают, как сложен характер рассеяния. На крупных частицах обратно к источнику свет почти не отражается. Зато рассеяние падающего излучения вперед хорошо знакомо каждому: пылающие закаты – это излучение, рассеянное вперед, к наблюдателю.

Если изменять длину волны (цвет излучения) или размеры и физические свойства частиц, лепестки диаграммы рассеяния будут сходиться или расходиться, увеличиваться или уменьшаться. И наоборот, сами атмосферные неоднородности воздействуют на проходящее солнечное излучение, в котором присутствует весь набор длин волн, воспринимаемых человеческим глазом и управляют, таким образом, красочными небесными декорациями.

Но объяснить свойствами индикатрисы появление цветных колец вокруг теней и ореола, при любых разумных размерах частиц, не удается, хотя снимки несомненно указывают на связь колец с физическими свойствами аэрозоля облаков. В разрывах или в разрежениях облаков кольца не видны. Обращает на себя внимание их высокая яркость: они ясно видны на фоне облаков, ярко освещенных Солнцем. Именно радужная окраска колец, их удивительная яркость и присутствие второго, внешнего кольца, подсказывают природу и происхождение цветных колец – это радуги, но несколько отличающиеся от обычных приземных. Известно, что к появлению радуги приводит сложная комбинация эффектов линзы и призмы при полном внутреннем отражении света в капле влаги облаков. Эффект зависит от углов, под которыми излучение падает на каплю, отражается и выходит из нее, а также от числа отражений света внутри капли.

Радуги и глории

Обычная, классическая радуга возникает под углом около 138°. Если отражений несколько, появляются вторичные радуги. Радужно окрашеные кольца отличаются от приземных радуг тем, что отраженные и преломленные лучи собираются и как бы фокусируются в узком конусе вблизи 180°, направленном обратно, к Солнцу. Этим объясняется высокая яркость радужного кольца, сравнимая с прямым солнечным освещением. В метеорологии такое кольцо называют глорией (иногда глориями называют вторичные приземные радуги). Второе кольцо глории также различимо на фотографиях. Таким образом, то, что видно на снимках, – это совмещенные эффекты двух совершенно разных явлений: результата взаимодействия света с крупным объектом, размеры которого намного больше длины волны света, и радуги (глории). А их пространственная совмещенность вполне естественно объясняется тем, что все возникающие углы откладываются от направления на Солнце, которое совпадает с направлением на самолет, если, конечно, смотреть из центра глории. Интересно, что видимые (угловые) размеры тени самолета и ореола зависят от высоты полета и уменьшаются с высотой, а размеры глории – нет.

Ореол с самолета виден часто. Чтобы возник ореол, расстояние до поверхности, на которой видна тень, должно быть достаточно большим. А для возникновения глории нужно, кроме того, сочетание целого ряда условий, зависящих от физических свойств рассеивающей среды ( мелких капель воды), их размеров, температуры и концентрации (плотности облаков или тумана).

А главное – Солнце должно быть прямо за спиной у наблюдателя. Поэтому кресло у окна в самолете, летящего в дневное время в чистом небе высоко над плотными облаками – самое подходящее место для фотографирования глории.

И все же иногда удается видеть подобное явление без всяких самолетов. Солнце за спиной у наблюдателя, при других необходимых условиях, чаще всего можно встретить в горах, при низком Солнце, на восходе или закате.

В сентябре 2010 г. группа участников конференции в Нижнем Архызе (обсерватория САО РАН, северный Кавказ) отправилась на экскурсию в горы. За их спиной было ясное небо с низким Солнцем, а впереди, как это часто бывает в горах, поднималась полоса плотного тумана. Доктор физ.-мат. наук М. Г. Мингалиев выполнял обязанности экскурсовода, но вместе с тем не расставался с фотокамерой. Когда вокруг его тени вдруг появилось кольцо глории, он не упустил возможность создать автопортрет с нимбом. Наверное, лет 200 назад нимб стал бы верным признаком святости М. Г. Мингалиева. А может быть, принес бы ему какие-нибудь неприятности.

На снимке хорошо видны радужные кольца глории. Ореол вокруг тени головы хотя и заметен, но он не очень яркий из-за сравнительно небольшого расстояния до тени. Радужные кольца имеют высокую яркость даже по сравнению со скалой справа на снимке, освещенной прямым светом Солнца (как и на снимках с самолета).

Конечно, такие необычные условия встречаются очень редко, но на всякий случай берите с собой фотокамеру, когда идете в горы.

Литература

М. Борн, Э. Вольф. Основы оптики. М.: Наука, 1979. С. 15—23.

Причины Всех Вещей //В мире науки. 2009. № 11, С. 50.

В публикации использованы фото автора 

: 29 Дек 2010 , Геомотор – двигатель катастроф , том 36, №6

Цветные тени: наука о свете и цвете

Ваша сетчатка, которая покрывает заднюю часть глаза, содержит световые рецепторы, называемые палочками и колбочками. Палочки используются для ночного видения и позволяют видеть только в оттенках серого. У вас есть только один тип стержней, но три типа колбочек. Колбочки позволяют видеть в цвете, если он не очень темный.

Все три типа колбочек реагируют на широкий диапазон длин волн, но один тип наиболее чувствителен к длинным волнам (красный конец спектра), один к средним длинам волн и один к коротким волнам (синий конец спектра). . Только с этими тремя типами колбочек мы способны воспринимать более миллиона различных цветов.

Когда на экран светят красный свет, синий свет и зеленый свет, экран выглядит белым, потому что эти три цвета света стимулируют все три типа колбочек в ваших глазах примерно в равной степени, создавая ощущение белого цвета. Поэтому красный, зеленый и синий цвета называются аддитивными основными цветами.

С помощью этих трех источников света вы можете создавать тени семи различных цветов — синего, красного, зеленого, черного, голубого, пурпурного и желтого, — блокируя различные комбинации источников света (щелкните, чтобы увеличить схему ниже). Когда вы блокируете два источника света, вы видите тень третьего цвета — например, блокируя красный и зеленый источники света, вы получаете синюю тень. Если вы заблокируете только один из источников света, вы получите тень, цвет которой будет смесью двух других. Блокируйте красный свет и смесь синего и зеленого света, чтобы создать голубой; заблокируйте зеленый свет, а красный и синий свет сделайте пурпурным; блокируют синий свет, а красный и зеленый делают желтый. Если вы заблокируете все три источника света, вы получите черную тень.

Аналогичного эффекта можно добиться, выключая разные лампочки. Если вы выключите красный свет, оставив только синий и зеленый свет, весь экран станет голубым. И когда вы держите объект перед экраном, вы увидите две тени, одну синюю и одну зеленую. В одном месте объект блокирует свет, исходящий от зеленой лампочки, оставляя синюю тень; в другом месте он блокирует свет синей лампочки, оставляя зеленую тень.

Когда вы приближаете объект к экрану, тени перекрываются, оставляя очень темную (черную) тень там, где объект блокирует оба источника света. Когда вы выключите зеленый свет, оставив включенными красный и синий свет, экран станет пурпурным, смесью красного и синего. Тени будут красными и синими. Когда вы выключите синий свет, оставив включенными красный и зеленый свет, экран будет казаться желтым. Тени будут красными и зелеными.

Может показаться странным, что красный свет и зеленый свет смешиваются, чтобы дать желтый свет на белом экране. Так уж получилось, что определенная смесь красного и зеленого света стимулирует колбочки в ваших глазах точно так же, как они стимулируются желтым светом, то есть светом желтой части радуги, поэтому ваш глаз не может объясни разницу. Будь то смесь красного и зеленого света или только желтый свет — всякий раз, когда колбочки в вашем глазу стимулируются именно в этих пропорциях, вы увидите желтый цвет.

Используйте теорию цвета для улучшения светлых участков и теней

Если вы рисуете или рисуете в цвете, то теория цвета должна быть концепцией, которую вы понимаете и часто используете. Знание теории цвета поможет вам принимать решения, которые иначе было бы трудно принять. Одно дело понимать теорию цвета, и совсем другое — разумно применять теорию цвета в своих работах. Теория цвета — очень сложная часть основ искусства. На этой странице будет описан один из способов использования теории цвета, чтобы сделать ваши нарисованные или нарисованные объекты более визуально стимулирующими и даже более реалистичными. Прежде чем мы перейдем к этому, давайте изучим некоторые основы света и тени.

Как мы видим

Мы видим объекты благодаря свету. Без света мы не можем видеть. Я знаю, очень глубоко, верно? Причина, по которой я указываю на это, заключается в том, что если мы собираемся рисовать или раскрашивать объекты такими, какими они нам кажутся, мы должны полностью понимать свет и то, как он ведет себя на объектах. Мы видим форму объектов благодаря тому, как свет взаимодействует с ними. Нам сообщают о свете, который попадает на них (источник света) через блики и тени. Блики — это области на объекте, где свет падает на объект. Основные моменты обычно создаются с помощью оттенка цвета. Противоположностью бликам являются тени. Тени — это области объекта, на которые не падает свет. Тени обычно создаются с использованием оттенков цвета. Расположение бликов и теней говорит нам, откуда исходит свет и как он взаимодействует с объектом.

Тени синего цвета

Тени изначально имеют синий оттенок. Это означает, что синий цвет является основным цветом для большинства теней. Большинство из нас считают тени черными, однако черный цвет является нейтральным. Оттенок тени на самом деле синий. Поэтому, когда мы создаем тень, теоретически она должна быть синей. Запомни.

Локальный цвет

Однако мы не видим синие объекты повсюду вокруг нас, вместо этого мы видим так называемый «локальный цвет». Локальный цвет относится к фактическому  цвету объекта. Местный цвет красного яблока — красный. На яблоке могут быть другие цвета, такие как желтый, белый или зеленый.

Необычное сочетание тени и света: Цветовая гамма сада — Ландшафтный дизайн

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх