HDR для «чайников». Что такое HDR10, HDR10+ и Dolby Vision на смартфонах
Оценка этой статьи по мнению читателей:Во всех наших обзорах смартфонов, мы обязательно указываем информацию о том, поддерживает ли экран конкретной модели режим HDR. И если да, то какой именно: HDR10, HDR10+ или Dolby Vision.
Несмотря на то, что эта технология становится крайне популярной не только в мире мобильных гаджетов, но и телевизоров, подавляющее большинство людей либо не совсем верно понимают ее суть и назначение, либо вообще не понимают, о чем идет речь.
В этом материале я постараюсь максимально просто и в то же время подробно рассказать о том, что же такого особенного в HDR-дисплеях, как работает эта технология и какие смартфоны поддерживают HDR.
HDR не имеет к этому никакого отношения!
Некоторые люди, видя буквы HD в аббревиатуре HDR полагают, что эта технология каким-то образом связана с разрешением экрана. В интернете иногда даже можно встретить вопросы о том, что лучше — HDR или 4K. На самом же деле, HDR не имеет никакого отношения к разрешению. HDR-видео может быть как в FullHD, так и 4K (и даже 8K) разрешении.
Еще более распространенным мифом является мнение, будто HDR — это видео, на котором картинка выглядит очень яркой и насыщенной. Примерно как на AMOLED-экранах 10-летней давности с перенасыщенными «кислотными» цветами.
Реальность же такова, что в большинстве случаев, стандартное видео выглядит ярче, чем HDR. А на форумах то и дело появляются вопросы о том, как отключить HDR, чтобы можно было хоть что-то разглядеть на экране своего смартфона.
После прочтения этой статьи вы будете хорошо понимать, почему так происходит и как нужно правильно смотреть контент в HDR.
А теперь перейдем к сути вопроса.
Что такое HDR? Или максимальная реалистичность изображения
HDR (High Dynamic Range) — это технология, позволяющая отображать видео с высокой битностью (глубиной), широким цветовым охватом и расширенным динамическим диапазоном.
Если это определение ни о чем вам не говорит и даже запутывает — отлично! Дальше мы подробно разберем каждую фразу.
Но, в основном, важно понимать следующее — HDR видео позволяет вам увидеть картинку именно такой, какой ее задумал производитель (кинокомпания).
HDR-видео должно в точности передавать запланированную автором атмосферу. Например, в одном из эпизодов сериала «Очень странные дела» есть сцена в темном помещении, куда заходят несколько человек с фотоаппаратом и делают снимки, используя вспышку.
На обычном смартфоне эта сцена не представляет из себя ничего интересного. Вы хорошо видите темное помещение и не особо обращаете внимание на вспышку фотоаппарата. Но на смартфоне с HDR-экраном дела обстоят иначе. Помещение выглядит более темным, а когда происходит вспышка, яркость экрана на мгновение поднимается так высоко, что вы невольно моргаете, словно она произошла в вашей комнате.
Более того, иногда во время воспроизведения видео, на экране могут появляться предупреждающие сообщения о том, что следующие сцены используют яркие спецэффекты, которые могут вызвать дискомфорт у чувствительных к свету зрителей.
Другими словами, HDR-дисплей позволяет максимально реалистично воспроизводить видео и вызывать те ощущения от картинки, которые хотел передать автор.
Каким же образом удается достичь такого эффекта?
HDR-видео и битность (глубина) цвета
Прежде всего, технология HDR подразумевает использование минимум 10 бит для кодирования цвета, в то время как обычный формат использует 8-битный цвет. Что все это значит?
Цвет каждого пикселя на экране формируется из 3 основных цветов: красного, зеленого и синего, которые смешиваются в нужной пропорции. Если проделать такую работу для нескольких миллионов точек — мы получаем красочный кадр.
Так вот, для хранения информации о каждом из 3 цветов, используется определенное количество данных (бит). Один бит может принимать только два значения: нолик или единицу. И если бы мы использовали всего 1 бит для хранения информации о цвете, каждая точка была бы либо чистой белой (если бит равен 1), либо черной (бит = 0).
Два бита позволяли бы нам хранить уже в 2 раза больше информации. То есть, получается такой набор значений и соответствующие им цвета:
2 бита позволяют хранить 4 цветаС помощью 3 бит можно было бы хранить еще больше информации (8 цветов): 000, 001, 010, 011, 100, 101, 110 и 111. И так далее.
Практически все современные смартфоны имеют 8-битные дисплеи. Соответственно, самый черный цвет будет иметь код 00000001, чуть светлее — 00000010 и вплоть до самого белого с кодом 11111111 (это условно, так как в действительности кодирование цвета идет не с первого бита). Всего с помощью 8 бит у нас получается сохранить (закодировать) до 256 значений различных оттенков.
Так как для создания цвета одного пикселя нужна информация о 3 основных цветах, соответственно, каждый из них может иметь по 256 оттенков, что в сумме дает 16 млн цветов (256 красных оттенков * 256 зеленых оттенков * 256 синих оттенков).
Используя 10 бит мы можем получить более 1 млрд различных оттенков (по 1024 каждого из трех основных цветов), а 12 бит дадут нам более 68 млрд цветов!
Первое требование HDR: стандарты HDR10 и HDR10+ используют глубину цвета 10 бит, а стандарт Dolby Vision (версия HDR от компании Dolby) — 12 бит!
А теперь важный вопрос:
Как вы считаете, есть ли смысл увеличивать глубину цвета, скажем, до 10 или даже 12 бит?
На первый взгляд — конечно! Ведь, чем больше цветов, тем красочнее будет изображение! Верно? Нет.
Для того, чтобы понять это, давайте представим, что на следующей картинке показаны все оттенки красного цвета, которые в теории способен отобразить дисплей:
И теперь стоит задача — решить, какую глубину цвета должен поддерживать наш экран. Если выбрать глубину 3 бита, тогда экран сможет отобразить всего 8 цветов. Вот как они будут примерно выглядеть:
Как видим, уже такого плавного градиента у нас нет. На картинке очень хорошо заметны переходы между первым цветом (код 000), вторым (001) и всеми остальными. А на оригинальной картинке цвет очень плавно переходит от темного к светлому.
Решить эту проблему очень легко. Достаточно увеличить глубину цвета с 3 бит до 8! Теперь от самого темного оттенка к светлому будет 256 градаций. Можно ли в этом случае увидеть разницу между двумя соседними цветами? Возможно, кто-то и увидит, но далеко не всегда.
Если же использовать 10-битный экран, который сможет отобразить 1024 оттенка красного цвета, тогда ни один человек не заметит разницу между двумя соседними цветами, так как она будет ничтожно мала. Другими словами, глубина 10 бит и выше является уже избыточной. Наше зрение не способно различать столь незначительные изменения яркости.
Но зачем тогда HDR использует 10 бит? Этот вопрос приводит нас ко второму важному определению HDR, так как изначально было сказано, что здесь используется очень широкий цветовой охват.
HDR-видео и широкий цветовой охват
Представьте, что на следующей картинке показаны все возможные цвета, которые способен различить человеческий глаз:
Весь видимый спектр цветаА теперь посмотрите, какую часть из этих цветов реально способен отобразить экран недорогого смартфона (все, что находится внутри белого треугольника):
Цветовое пространство sRGBЭто всего лишь около 36% от того количества цвета, что мы способны увидеть!
Белый треугольник из нашего примера называется цветовым пространством (или цветовым охватом) и означает определенный набор возможных цветов. Если устройство имеет цветовой охват sRGB, значит оно способно отображать только те цвета, что находятся внутри этого набора.
И какую бы глубину цвета мы ни использовали, кодироваться будут только эти цвета. Соответственно, для пространства sRGB вполне достаточно 8 бит. Цвета при таком количестве оттенков будут иметь весьма плавные переходы.
Однако, современные топовые смартфоны способы отображать гораздо больше цветов, чем то количество, что входит в цветовое пространство sRGB. Соответственно, были стандартизированы и другие пространства: DCI-P3 и Rec.2020. Вот как они выглядят в сравнении с sRGB:
Rec.2020, DCI-P3 и sRGBНесмотря на то, что в цветовое пространство Rec.2020 входит гораздо больше цветов, оно все еще не способно покрыть весь видимый нами спектр (если быть более точным, Rec.2020 покрывает 75.8% видимых цветов). Но, в любом случае, такой экран будет отображать гораздо более реалистичную картинку. Заметьте, не более насыщенную, а именно реалистичную.
И вот теперь, когда экран способен отобразить больше цветов, нам, соответственно, нужна и большая глубина цвета. Привычных 8 бит уже не будет достаточно. Чтобы это лучше представить, вернемся на секунду к примеру с красным цветом:
Теперь нам нужно отображать не этот диапазон цветов, а уже более широкий:
И чем шире будет цветовое пространство экрана (чем больше цветов он способен отобразить), тем больше нужно бит для передачи всех оттенков с плавным переходом от одного к другому.
То есть, можно сделать такой вывод: цветовое пространство (охват) говорит о том, какое количество цветов способен отобразить экран, а битность (глубина) цвета показывает количество градаций между этими цветами и влияет на плавность перехода одного цвета в другой.
Второе требование HDR: стандарт HDR (HDR10/HDR10+/Dolby Vision) использует цветовое пространство Rec.2020.
Проблема заключается лишь в том, что на текущий момент не существует в природе смартфона, экран которого поддерживал бы такое же цветовое пространство (Rec.2020). Самые дорогие смартфоны (iPhone 11 Pro Max, Samsung Galaxy S20 Ultra и прочие флагманы) в лучшем случае поддерживают чуть больше цветов, чем входит в пространство DCI-P3.
Для примера, экран Samsung Galaxy Note10 покрывает около 113% пространства DCI-P3.
Теперь подведем небольшие итоги. Как я уже сказал в самом начале, HDR — это стандарт, позволяющий отображать видео с высокой битностью, широким цветовым охватом и расширенным динамическим диапазоном. К этому моменту два первых пункта уже должны быть понятны (битность и цветовой охват). Осталось лишь разобраться с динамическим диапазоном.
У кого-то, возможно, уже возник вопрос — так что же делать с тем фактом, что на рынке нет смартфонов, поддерживающих цветовое пространство Rec.2020, как тогда они отображают HDR-видео? На самом деле, на рынке нет и смартфонов с настоящим 10-битным экраном. Более того, сейчас мы поговорим о динамическом диапазоне и выясним, что самый лучший экран совершенно не соответствует и третьему требованию.
Значит ли все это, что никакого HDR на смартфонах в действительности нет? Об этом поговорим чуть ниже.
HDR-видео и широкий динамический диапазон
Динамический диапазон — это разница между самым темным и самым ярким пикселем. Широкий динамический диапазон означает то, что экран способен показать в одном кадре как очень яркие объекты, так и темные. Причем, везде должны быть видны детали, а не просто белые и черные пятна.
Вот, для примера кадр из фильма с очень низким динамическим диапазоном (кадр специально испорчен для демонстрации эффекта):
Кадр из фильма «В погоне за Бонни и Клайдом»Как видим, на рубашках и на фоне неба нет никаких деталей — просто белые пятна. Также здесь наблюдается проблема с отображением деталей в тенях — на штанах и костюме снова пятна, только уже черного цвета.
Если бы экран имел более высокий динамический диапазон, этот кадр выглядел бы совершенно по-другому:
Пример с высоким динамическим диапазономТеперь здесь появились все детали на тех участках, где были лишь белые и черные пятна, да и в целом картинка смотрится более естественно и приятно.
Так вот, способность отображать очень яркие и контрастные цвета зависит от максимальной яркости дисплея нашего устройства. Чем выше яркость — тем более широкий динамический диапазон поддерживается.
С черным цветом проблем на AMOLED-экранах нет, так как на минимальной яркости пиксель просто отключается и мы имеем максимально глубокий черный цвет. А вот с максимальной яркостью все не так просто.
Яркость измеряется в канделах или точнее канделах на квадратный метр (от лат. candela — свеча). То есть, сила света, излучаемая одной свечой, равняется 1 канделе (кд). Также иногда применяется другая единица измерения под названием нит (сокращенно нт). Это ровно то же, что и кд/м2 только называется по-другому. Соответственно, 1 нт = 1 кд/м2.
Яркость экрана каждого смартфона отличается. К примеру, максимальная яркость дисплея Samsung Galaxy A51 равняется около 400 нит (в автоматическом режиме на солнце может доходить до 636 нит), у Redmi Note 8 Pro — 460 нит или 640 нит в авто-режиме на ярком солнце).
Но дорогие флагманские модели имеют дисплеи еще ярче. Причем, они способны выдавать пиковую яркость в режиме HDR, не доступную при обычном использовании. Для iPhone 11 Pro пиковая яркость в HDR доходит до 1300 нит, а для Galaxy S20 — 1342 нит!
Однако не следует обольщаться такими высокими значениями. Дело в том, что в AMOLED-экранах каждый пиксель сам излучает свет, когда на него подается напряжение. Чтобы отобразить белую картинку, каждый пиксель, состоящий из 3 субпикселей (красного, зеленого и синего), должен ярко светиться. Если мы хотим отобразить черную картинку, все пиксели должны быть выключены.
Учитывая то, что потребляемая дисплеем максимальная мощность ограничена, можно выделить больше мощности на подсветку конкретного пикселя, отключив другие. Соответственно, пиковая яркость HDR-дисплеев перечисленных смартфонов достигается только при отображении небольшого участка изображения (не более 10-20% экрана) на короткий отрезок времени.
Скажем, можно отобразить звезды на ночном небе с очень высокой яркостью (до 1300 нит) или вспышку света. И этого достаточно для HDR, но при обычном использовании такая яркость недостижима физически.
Поэтому, при выборе смартфона, если вы хотите насладиться HDR-контентом, обязательно следует обращать внимание на пиковую яркость в режиме HDR. Многие производители предоставляют такие данные о своих смартфонах.
Третье требование HDR: при мастеринге HDR-контента используются значения яркости от 1000 нит (HDR10) до 4000 нит (HDR10+ и Dolby Vision), причем, Dolby Vision поддерживает пиковую яркость до 10000 нит.
Говоря о яркости, стоит еще указать очень важное отличие обычного видео от HDR-контента.
Что с яркостью HDR-видео!? Или о том, как правильно смотреть HDR-контент
Дело в том, что в обычном видео сигнал интерпретируется в относительных значениях. Например, яркость взрыва нужно отображать на 90% от максимальной яркости экрана, а яркость звезд на ночном небе — на 10% от максимальной.
В принципе, когда-то с этим не было никаких проблем, так как за максимальное значение бралось 100 нит и производитель примерно понимал, как будет выглядеть картинка на любом экране.
Но затем технологии ушли далеко вперед и те самые 10% от максимальной яркости на экране с яркостью 600 нит выглядели уже совершенно не так, как планировалось.
Можно в качестве аналогии привести пример с транспортом. Будете ли вы испытывать одни и те же ощущения при езде со скоростью 90% от максимальной на автобусе и спортивном автомобиле? Конечно нет, так как максимальная скорость спорткара и автобуса совершенно разная. То же и с яркостью видео.
В HDR применяется совсем другая концепция. Здесь производитель работает не с относительными значениями, а прямо устанавливает яркость в нитах. К примеру, вместо яркости свечи на 1% от максимальной, производитель устанавливает яркость 1 нит. И каким бы ярким ни был экран вашего смартфона, сцена, в которой горит свеча, будет всегда иметь яркость 1 нит.
Если мы берем 10-битный цвет (то есть, каждый цвет имеет 1024 значения яркости), тогда в случае с HDR число 100 будет означать не 10% от максимальной яркости, а конкретное значение, скажем, 0.3 нита. Число 300 будет уже означать 9 нит, а 500 — 82 нита. И так до последнего значения, где 1024 будет означать максимальную яркость = 1000 нит (или 4000 нит, в зависимости от стандарта HDR).
Вы, возможно, обратили внимание на то, что числа как-то нелинейно распределяют яркость. По логике, если число 1024 означает максимальную яркость (1000 нит), тогда число 300 должно соответствовать 300 нитам, но в реальности соответствует только 9 нитам. Действительно, около 50% от 10-бит используется для кодирования первых 100 нит яркости, а вторая половина — для остальных 900 нит. Связано это с особенностью нашего зрения. Мы гораздо лучше различаем оттенки именно на нижней границе восприятия. Поэтому для лучшей детализации изображения более 50% всех бит используется для кодирования первых 10% яркости (от нуля до 100 нит).
А для того, чтобы зритель ничего не испортил, при воспроизведении HDR-контента, смартфон включает максимальную яркость и блокирует ее ручное изменение. То есть, вы не сможете сдвинуть с места привычный ползунок яркости в шторке уведомлений.
Поэтому, для максимально реалистичного изображения желательно вообще перед просмотром видео отключать автояркость и устанавливать яркость экрана на 100%.
А теперь еще один важный момент. Возвращаясь к нашей вымышленной сцене со свечой, которая светится с яркостью 1 нит, скажите, сможете ли вы увидеть хоть что-то на экране, если будете смотреть видео в ярко освещенной комнате?
Посмотрите на два квадрата одного и того же цвета:
Квадраты слева и справа одного цветаНам кажется, что квадрат слева более яркий и светлый, нежели квадрат справа. В реальности это один и тот же цвет, просто отличается фон, на котором эти квадраты расположены. Если убрать этот градиент, чтобы фон остался белым, разницы уже никакой не будет:
Или вот еще лучший пример, где клетки A и B — одного цвета:
То же происходит и с видео. Если смотреть на экран при максимальной яркости в полной темноте, этот свет будет просто «выжигать» глаза. Но если посмотреть на тот же экран с такой же яркостью, но уже при свете дня (или еще лучше — на ярком солнце), тогда мы не ощутим никакого дискомфорта, более того, нам захочется сделать экран даже поярче.
Так вот, по задумке производителя, все HDR-видео нужно смотреть практически в полной темноте. То есть, яркость на момент производства выставляется с расчетом на отсутствие окружающего света.
Именно по этой причине многие пользователи жалуются на низкую яркость HDR-контента.
Так может ли мой смартфон воспроизводить HDR-видео?
Как мы уже разобрались, на рынке нет ни одного смартфона, который бы:
- Поддерживал цветовой охват Rec.2020
- Имел настоящий 10-битный экран
- Поддерживал пиковую яркость 4000 нит и выше
Более того, есть смартфоны с поддержкой HDR, у которых пиковая яркость не превышает 500-600 нит! И, тем не менее, все они гордо заявляют о поддержке HDR, HDR10+ или даже Dolby Vision.
Прежде всего, некоторые смартфоны, все же, способны достаточно точно воспроизводить HDR-контент, особенно в формате HDR10, который ориентируется на максимальную яркость = 1000 нит.
Но что делать, если на видео в формате Dolby Vision присутствуют сцены с яркостью 2000 нит и выше? Нужно как-то поместить в диапазон яркости смартфона 1-1000 нит те детали, что видны на видео при яркости в 2000 нит. Это как попытаться перелить жидкость из 3-литровой банки в литровую, не потеряв при этом ни капли.
На первый взгляд задача кажется невыполнимой, но на помощь приходит математика и алгоритмы, в частности, тональная компрессия. Именно этот алгоритм пытается преобразовать яркость сигнала в то, что может быть отображено конкретным экраном.
В общих чертах работает это следующим образом. Вместе с каждым HDR-видео обязательно идут «в комплекте» метаданные. Это как информация о дате и месте съемки на ваших фотографиях. Только в случае с HDR-видео в метаданных находится гораздо больше полезной информации.
В частности, когда видео готово, в метаданные прописывается максимальная яркость и средняя яркость кадра. Когда смартфон открывает определенное видео, он сразу же считывает метаданные, чтобы понять, хватает ли его возможностей для отображения контента. И если, к примеру, видео было сделано с максимальной яркостью 1000 нит, а открывается оно на iPhone 11 Pro (с пиковой яркостью ~1300 нит), тогда никакой тональной компрессии делать не нужно и мы получим максимально приближенную к оригиналу картинку.
Конечно, нужно еще решить проблему с 10-битами и широким цветовым охватом, но в плане динамического диапазона никаких проблем не будет.
Если же телефон встречает видео с максимальной яркостью в 4000 нит, включается тональная компрессия, которая частично понижает яркость и пытается восстановить некоторые детали в светлых участках. Но, при этом, качество картинки будет уже заметно ниже (потери деталей в тенях и даже частичное искажение цвета).
Но согласитесь, было бы глупо применять тональную компрессию ко всему видео, если только одна сцена содержит очень яркую вспышку света на 4000 нит. Из-за этой сцены портить качество всего фильма крайне неразумно. Но, именно так и происходит, если метаданные у нас статические. То есть, они просто отображают «среднюю температуру по больнице».
Для этого придумали динамические метаданные. В таких метаданных отображается не максимальная яркость фильма, а максимальная яркости каждой конкретной сцены или даже каждого кадра! Например, если на видео, которое было сделано с максимальной яркостью 4000 нит, идет сцена в темном помещении, освещенном свечой, метаданные сообщают о том, что с этой секунды максимальная яркость не превышает 2-5 нит. Соответственно, никакой тональной компрессии делать не нужно и можно отображать больше деталей в тенях.
Однако, к сожалению, не все HDR стандарты поддерживают динамические метаданные.
В чем разница между HDR, HDR10, HDR10+ и Dolby Vision?
Прежде, чем вы посмотрите таблицу с перечнем «характеристик» каждого стандарта, важно знать следующее. Если вы встречаете устройство с поддержкой HDR (без дополнительных цифр), это значит, что речь идет об HDR10. То есть, любой смартфон с поддержкой HDR — это смартфон с поддержкой HDR10.
То же касается и любого видео. Если не указано, что видео поддерживает HDR10+ или Dolby Vision, значит, оно создано в формате HDR10. Другими словами, HDR10 — это базовый набор рекомендаций, который используется всегда, если не указано обратное. Поэтому сравнивать нужно HDR10, HDR10+ и Dolby Vision.
На самом деле, существует больше стандартов, но на смартфонах они не встречаются.
HDR10+ это стандарт от компании Samsung, разработанный совместно с Panasonic и 20th Century Fox.
Dolby Vision — более продвинутый стандарт от компании Dolby. В отличие от HDR10 и HDR10+ этот стандарт требует лицензирования, то есть, компании, желающие добавить его поддержку в свои смартфоны, должны платить лицензионные отчисления компании Dolby. На сегодняшний день, только смартфоны Apple поддерживают Dolby Vision.
HDR10+ поначалу встречался только на флагманах Samsung, начиная с Galaxy S10+. Но сейчас к этому стандарту подключились Xiaomi, OPPO, OnePlus, Realme и Vivo.
Во всех остальных аппаратах используется HDR10. Но, так как это даже не совсем стандарт, а, скорее, набор рекомендаций, HDR10-видео могут выглядеть по-разному на многих устройствах.
Основные отличия HDR10, HDR10+ и Dolby Vision перечислены в таблице ниже:
Параметр | HDR10 | HDR10+ | Dolby Vision |
Глубина цвета | 10 бит | 10 бит | 12 бит |
Возможное кол-во оттенков | 1.07 млрд | 1.07 млрд | 68.7 млрд |
Максимальная яркость | 1000 — 4000 нит | 1000 — 4000 нит | 4000 — 10000 нит |
Метаданные | Статические | Динамические | Динамические |
Стоимость | Бесплатно | Бесплатно | Платно |
Как видим, главным преимуществом HDR10+ перед HDR10 является поддержка динамических метаданных. То есть, видео с HDR10+ будет выглядеть заметно лучше на устройствах, максимальная яркость которых не отвечает заявленным требованиям.
Кроме того, видео в HDR интересны еще и тем, что они имеют отличный запас на будущее. Чем более качественные экраны будут появляться в будущем, тем более красочно и реалистично будут выглядеть «старые» фильмы. К примеру, уже сегодня выпускаются фильмы с поддержкой пиковой яркости до 4000 нит и, естественно, 10-битным цветом + широчайшим цветовым охватом. Это видео будет выглядеть совершенно по-другому на будущих смартфонах.
Где же брать контент в формате HDR?
Многие стриминговые сервисы поддерживают HDR-видео. То есть, для оценки HDR можно смело воспользоваться одним из следующих сервисов: ivi, Okko, Megogo или Netflix. Практически все они предоставляют бесплатный тестовый период.
Что касается Dolby Vision, пока только один Netflix поддерживает этот стандарт. К слову, мы уже выпускали подробный обзор этого сервиса.
P.S. Мы открыли Telegram-канал и сейчас готовим для публикации очень интересные материалы! Подписывайтесь, чтобы ничего не пропустить!
Понравилась статья? Поделитесь с другими:
Как бы вы оценили эту статью?
Нажмите на звездочку для оценки
Оценить!Внизу страницы есть комментарии…
Напишите свое мнение там, чтобы его увидели все читатели!
Если Вы хотите только поставить оценку, укажите, что именно не так?Отправить
Большое спасибо за отзыв!
Время широких диапазонов или подробнее о HDR.
Последнее время в интернете появляется все больше и больше оригинальных изображений, визуально весьма нетипичных — красочных, предельно детализированных, напоминающих то ли картины художников-реалистов, то ли качественные иллюстрации к рисованным мультфильмам. Аббревиатура HDR с момента появления на свет прочно вошла в обиход виртуальных завсегдатаев, получив в их жаргоне транслитерацию ХДР. Кто не знал ее смысла, вторил знатокам, старательно выписывая заглавные буквы, дабы не спутать ХДР с ГДР или, чего доброго, с КГБ. Ну а сами знатоки тем временем раскручивали это новое направление в фотографии вовсю, создавая блоги, дискутирую в форумах, а главное — размещаясь в интернет — галереях. Собственно то, что скрывалось за данной аббревиатурой, лучше всего делало рекламу само по себе. Одни называли гиперреальные изображения заразной болезнью, другие — свидетельством вырождения классической фотографии, третьи — прогрессивным выражением передовых тенденций в современном цифровом исскустве.
Споры продолжаются и по сей день, принимая еще более крайние формы. Правда, скептики успеха и аутентичности нового направления постепенно начинают принимать вещи такими, как есть. А HDR-апологеты называют в качестве гипотетических пропагандистов новой техники исполнения векиких экспериментаторов Мэна Рэя и Ласло Моголи-Надя, которые, будь они живы в наше время, обязательно пришли бы к чему-то подобному. Интересна точка зрения одного из известных HDR-фотографов, Джеспера Кристенсена: «Новые технические возможности современных визуальных медиасредств, в том числе и фотографии, неизменно влекут за собой попытки и поиски авторов в соответствующих их духу направлениях новых обликов художественного выражения. Более того, переплетения на техническом уровне порождают и смешения на уровне сюжетном, эстетическом. Гибридные образы, подобные HDR, – это уже даже не феномен нашего времени, а однозначно – доминирующая тенденция будущего». Но к морально-эстетическим аспектам темы мы, вероятно, еще вернемся в будущих
Проблема динамического диапазона
Без теории – никуда. Но мы постараемся изложить ее доступными формулировками. Итак, английский термин HDR содержит в себе качественное определение одного давно знакомого нам понятия – динамический диапазон (дословный перевод HDR – «высокий динамический диапазон»). Разложим его по частям, начав с ключевого определения – «высокий». Что же такое динамический диапазон? Наверняка наши постоянные читатели представляют его себе хотя бы в общих чертах. Сейчас пришло время углубиться в детали. Верно, ДД в фотографии характеризует соотношение между максимально и минимально измеримой интенсивностью света. Но в реальном мире не существует чисто белого или чисто черного цвета, а есть лишь различные уровни интенсивности источников света, варьирующиеся вплоть до бесконечно малых величин. Из-за этого теория ДД усложняется, а сам термин, помимо характеристики реального соотношения интенсивности освещения фотографируемого сюжета, может быть применен к описанию цветовых градаций, воспроизводимых устройствами фиксации визуальной информации – камерами, сканерами, или устройствами ее вывода – мониторами, принтерами.
Человек пришел в этот мир полностью самодостаточным, он – идеальный «продукт» эволюционного природного развития. Применительно к фотографии это выражается в следующем: глаз человека способен различать диапазон интенсивности света, находящийся в пределах от 10-6 до 108 кд/м2 (кандел на кв. метр; кандела – единица измерения световой интенсивности, равная силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540х1012 Гц, которая в свою очередь соответствует частоте зеленого цвета).
Интересно взглянуть на следующие величины: интенсивность чистого звездного сияния равна лишь 10-3 кд/м2, закатного/рассветного света – 10 кд/м2, а освещенной прямым дневным светом сцены – 105 кд/м2. Яркость солнца приближается к миллиарду кандел на кв. метр. Таким образом, очевидно, что способности нашего зрения попросту феноменальны, особенно если противопоставить им возможности придуманных нами устройств вывода информации, например ЭЛТ-мониторов. Ведь они могут корректно передавать изображения с интенсивностью всего от 20 до 40 кд/м2. Но это так, для общей информации – для разминки и сравнения. Однако вернемся к динамическому диапазону, который касается нас, цифровых фотографов, в наибольшей мере. Его широта напрямую зависит от размеров ячеек сенсоров камер.
Чем они больше, тем шире ДД. В цифровой фотографии для описания его величины придуманы f-стопы (часто обозначаются как EV), каждый из которых соответствует изменению интенсивности света в два раза. Тогда, например, сюжет с разбросом уровня контрастности 1:1024 будет содержать 10 f-стопов динамического диапазона (210-1024). Зеркальная цифровая камера воспроизводит ДД, равный 8-9 f-стопов, плазменные ТВ-панели – до 11, а фотоотпечатки вмещают не больше 7 f-стопов. Тогда как соотношение максимальной и минимальной контрастности для вполне типичной сцены – яркий дневной свет за окном, плотная полутень в комнате – может достигать 1:100 000. Нетрудно подсчитать, что это будет соответствовать 16-17 f-стопам. Кстати, глаз человека одновременно воспринимает диапазон контрастности 1:10 000. Так как наше зрение фиксирует отдельно интенсивность освещения и его цвет, то одновременно доступная глазу гамма светов составляет 108 (10 000 оттенков яркости умножить на 10 000 оттенков цвета).
Проблемы битовой глубины
Обратите внимание – в нашу беседу закралось слово «цвет», присоединяясь к понятиям «интенсивность» и «контрастность». Посмотрим, чем оно является в контексте динамического диапазона. Переместимся на пиксельный уровень. Вообще-то говоря, каждый пиксель изображения имеет две основные световые характеристики – интенсивность и цвет. Это понятно. Как измерить количество уникальных цветов, составляющих колористическую гамму снимка? С помощью битовой глубины – числа нулей и единиц, битов, используемых для обозначения каждого из цветов. Применительно к ч/б изображению битовая глубина определяет количество оттенков серого. Картинки с большей битовой глубиной могут охватывать более значительное количество оттенков и цветов, поскольку содержат больше комбинаций нулей и единиц. Каждый цветной пиксель в цифровом изображении представляет собой определенную комбинацию трех цветов – красного, зеленого и синего, которые часто именуются цветовыми каналами. Диапазон их цветовой интенсивности указывается в битах на канал.
В то же время биты на пиксель (англ. сокращение – bpp) подразумевают общую сумму битов, имеющуюся в трех каналах и фактически представляют количество цветов в одном пикселе. Например, при записи цветовой информации в 8-битовых JPEG’ах (24 бита на пиксель) используется по восемь нулей и единиц для характеристики каждого из трех каналов. Интенсивность синего, зеленого и красного цветов обозначается 256 оттенками (градациями интенсивности). Число 256 удачно кодируется в двоичной системе и равняется 2:8. Если скомбинировать все три цвета, то один пиксель 8-битового изображения можно будет описывать 16 777 216 оттенками (256?256?256, или 224). Исследователи выяснили, что 16,7 млн оттенков вполне достаточно для передачи изображений фотографического качества. Отсюда и знакомый нам «true color». Будет ли изображение считаться имеющим более широкий ДД или нет, по большому счету зависит от его количества битов на цветовой канал. 8-битовые снимки считаются изображениями LDR (low dynamic range – узкий динамический диапазон). 16-битовые картинки, получаемые после конвертации RAW, также относят к категории LDR. Хотя их теоретический ДД мог бы равняться 1:65 000 (216). На самом деле, производимые большинством камер RAW-изображения имеют ДД не больше, чем 1:1000. К тому же при конвертации RAW используется одна стандартная тональная кривая, независимо от того, конвертируем мы файлы в 8- или 16-битные изображения. А поэтому, работая с 16 битами, вы получите больше четкости в определении оттенков/градаций и интенсивности, однако не получите ни «грамма» дополнительного ДД. Для этого вам понадобятся уже 32-битные изображения – 96 бит на пиксель! Их мы и будем называть High Dynamic Range Images – HDR(I).
Решение всех проблем
Снимки с расширенным динамическим диапазоном… Давайте еще раз нырнем в теорию битов. Всем знакомая модель RGB до сих пор является универсальной моделью описания изображений. Цветовая информация по индивидуальным пикселям кодируется в виде комбинации трех цифр, соответствующих уровням интенсивности оттенков. Для 8-битных изображений она будет находиться в пределах от 0 до 255, для 16-битных – от 0 до 65 535. Согласно модели RGB, черный цвет представляется как «0,0,0», то есть полное отсутствие интенсивности, а белый – как «255, 255, 255», то есть цвет с максимальной интенсивностью трех основных цветов. В кодировке допускается использование только целых чисел. Тогда как применение вещественных чисел – 5,6 или 7,4, да и любых дробных чисел с плавающей запятой, в рамках RGB-модели попросту недопустимо. Вот на таком противоречии и зиждется изобретение одного из американских компьютерных гениев Пола Дебевеца. В 1997 г. на ежегодной конференции специалистов в области компьютерной графики SIGGRAPH Пол изложил ключевые моменты своей новой научной работы, касающейся способов извлечения карт расширенного динамического диапазона из фотоснимков и их интеграции в визуализированные сцены с помощью нового графического пакета Radiance. Тогда-то впервые Пол и предложил съемку одного сюжета множество раз с изменяющимися значениями экспозиции и последующим объединением снимков в одно HDR-изображение. Грубо говоря, информация, которую содержат такие изображения, соответствует физическим величинам интенсивности и цвета. В отличие от традиционных цифровых изображений, состоящих из цветов, понимаемых устройствами вывода – мониторами, принтерами.
Указание величин освещенности вещественными числами теоретически снимает любые ограничения на вывод динамического диапазона. Скептики могут спросить, например, почему бы просто не добавлять все больше битов, охватывая ими самый экстремальный разброс световой и тональной контрастности? Дело в том, что в снимках с узким ДД для представления светлых тонов используется значительно большее количество битов, чем для темных. Поэтому по мере добавления битов пропорционально будет увеличиваться и часть тех из них, которые идут на более точное описание вышеуказанных тонов. А эффективный ДД практически останется неизменным. И напротив, числа с плавающей запятой, являясь линейными величинами, всегда пропорциональны фактическим уровням яркости. За счет этого биты равномерно распределяются по всему ДД, а не только концентрируются в области светлых тонов. Вдобавок такие числа фиксируют значения тонов с постоянной относительной точностью, ведь мантисса (цифровая часть), скажем, у 3,589?103 и 7,655?109, представлена четырьмя цифрами, хотя второе и больше первого в два миллиона раз.
Экстрабиты HDR-изображений позволяют передавать бесконечно широкий диапазон яркостей. Все могли бы испортить мониторы и принтеры, не признающие нового языка HDR, – у них своя фиксированная шкала яркостей. Но умные люди придумали такой процесс, как «tone mapping» – тональное сопоставление или отображение (дословно – создание карты), когда происходит перевод 32-битного HDR-файла в 8- или 16-битный, подогнанный под более ограниченный ДД устройств отображения. По сути, идея tone mapping базируется на решении проблемы потери деталей и тональностей в областях максимальной контрастности, их расширении с целью передачи всеобъемлющей цветовой информации, заложенной в 32-битном цифровом изображении.
С чего начинается удачный HDR
О тональных сопоставлениях очень хорошо знает один из наших четырех сегодняшних героев – итальянец Джанлука Несполи. Он, пожалуй, наиболее технически подкован. Помимо Photoshop, он с энтузиазмом экспериментирует с другими профессиональными графическими пакетами, в том числе и такими, которые были специально созданы для оптимизации HDR-результатов. Прежде всего, это Photomatix. Программа, соединяя несколько снимков с различной экспозицией, создает 32-битный файл с расширенным ДД, а затем подвергает его «тоун маппингу», применяя один из двух алгоритмов, называемых также операторами: глобальным или локальным. Процесс сопоставления по схеме глобального оператора сводится к обобщению интенсивностей пикселей вместе с тональными и прочими характеристиками изображения. В работе локального оператора, помимо этого, учитывается также и расположение каждого пикселя по отношению к остальным. В принципе, функция генерирования HDR-изображений вместе с сопутствующим «тоун маппингом» реализована и в Photoshop CS2. Ее вполне достаточно для заданий, которые реализуют датчанин Кристенсен и молодая фотохудожница из Санкт-Петербурга Микаэлла Райнрис. Наш четвертый герой – Густаво Оренштайн – по-прежнему не решил, какому из рабочих инструментов отдать предпочтение, а потому склонен к экспериментам с новыми программными HDR-ресурсами.
Чуть ниже мы рассмотрим практические нюансы работы с каждой из двух основных программ, обобщив рекомендации, полученные от этих фотоиллюстраторов новой волны. А пока прикинем, какой исходный материал необходим для получения изображений с расширенным ДД. Очевидно, что без нескольких снимков с различными значениями экспозиции не обойтись. Достаточно ли будет одного «сырого» RAW? Не совсем. Общий ДД, полученный после конвертации одного даже самого большого RAW-изображения с различными значениями уровня экспозиции, не может быть шире того динамического диапазона, который воспроизвела ваша камера. Это все равно, что разрезать ДД снимка в режиме RAW на несколько частей.
«Сырые» файлы кодируются 12 битами на канал, соответствующими разбросу контрастностей 1:4096. И только из-за неудобства 12-битной кодировки получаемым из RAW изображениям в формате TIFF присуждается 16 бит на канал. Одним RAW еще можно как-то обойтись, если речь не идет о высококонтрастной сцене. Съемка же нескольких кадров, предназначенных для дальнейшего объединения в одно целое, требует соблюдения определенных процедур настройки параметров отработки экспозиции, да и физического монтажа самой камеры. В принципе, и Photoshop, и Photomatix корректируют незначительные нестыковки при накладывании пиксельных массивов друг на друга, возникающие на снимках из экспозиционной серии вследствие отсутствия должной фиксации камеры. К тому же зачастую очень короткие выдержки и хорошая скорость съемки аппарата в режиме автоматического брекетинга (что особенно важно, если объект в кадре перемещается) позволяют компенсировать возможные перспективные искажения. Но все же крайне желательно свести их на нет, а для этого камере потребуется надежная опора в виде хорошего штатива.
Джеспер Кристенсен повсюду носит сверхлегкий карбоновый штатив Gitzo. Иногда для большей устойчивости подвешивает к его центральной колонне сумку, не прикасается к кнопке спуска затвора, используя пульт ДУ или таймер автоспуска, и блокирует зеркало своей Canon 20D. В настройках камеры главным, помимо сохранения постоянной диафрагмы для всех снимков, которые составят будущее HDR-изображение, является определение их количества и диапазона отработки экспозиции. Сначала, с помощью точечного замера камеры, если, конечно, таковой имеется, произведите считывание уровня освещенности самой темной и самой светлой областей сцены. Вот этот спектр ДД вам и необходимо записать с помощью нескольких экспозиций. Задайте минимальное значение светочувствительности ISO. Любые шумы в процессе «тоун маппинга» будут подчеркнуты еще больше. Про диафрагму мы уже сказали. Чем контрастнее сюжет, тем меньше должен быть экспозиционный интервал между снимками. Иногда может понадобиться до 10 кадров с интервалом 1 EV (каждая экспозиционная единица соответствует изменению уровня освещения в два раза). Но, как правило, достаточно 3-5 кадров RAW, отличающихся между собой двумя стопами освещенности. Большинство камер среднего уровня позволяют проводить съемку в режиме брекетинга экспозиции, вмещая в диапазон +/–2 EV три кадра. Функцию автоматического брекетинга легко обмануть, заставив снимать в диапазоне, который в два раза шире. Делается это так: выбираете подходящую центральную экспозицию, и прежде чем выстрелить три положенных кадра, задаете значение компенсации экспозиции -2 EV. После их отработки быстренько перемещаете ползунок компенсации к отметке +2 EV и выстреливаете еще одну очередь из трех кадров. Таким образом, после удаления продублированной центральной экспозиции у вас на руках останется пять кадров, покрывающих участок от +4 EV до -4 EV. ДД такой сцены будет приближаться к отметке 1:100 000.
с Photoshop в мир HDR
Доступный всем Photoshop делает доступными и изображения с расширенным динамическим диапазоном. В меню «Инструменты» находится команда Merge to HDR. Именно с нее и начинается путь к презентабельному HDR-изображению. Сначала все ваши объединенные экспозиции предстанут в виде одного снимка в окошке превью – это уже 32-битная картинка, однако монитор пока не в состоянии отобразить всех ее преимуществ. Помните, «глупый» монитор является всего лишь 8-битным устройством вывода. Ему, как нерадивому школьнику, нужно все разложить по полочкам. Но гистограмма в правом углу окошка уже многообещающе растянулась, став похожей на горную вершину, что говорит обо всем потенциале ДД, содержащемся в только что созданном изображении. Ползунок в нижней части гистограммы позволяет увидеть детали в том или ином тональном диапазоне. На данной стадии ни в коем случае не следует задавать битовую глубину меньше 32. Иначе программа сразу же обрежет тени и света, ради которых, собственно, весь этот сыр-бор.
Получив от вас добро на создание очередного HDR-чуда, Photoshop сгенерирует изображение, открыв его в основном рабочем окне программы. Скорость реагирования ее алгоритмов будет зависеть от мощности вашего процессора и объема оперативной памяти компьютера. Однако при всех ужасающих перспективах получить на выходе что-то очень массивное, многомегабайтное 32-битный HDR (при условии, что он собран, например, из трех снимков) будет «весить» только около 18 Мб, в противоположность одному 30-Мб стандартному TIFF’у.
Фактически, до этого момента наши действия были лишь частью подготовительного этапа. Теперь пришло время инициировать процесс соотнесения динамических диапазонов полученного HDR-изображения и монитора. 16 бит на канал в меню Mode – наш следующий шаг. Photoshop осуществляет «тоун маппинг», используя четыре различных метода. Три из них – экспозиция и гамма, сжатие светов и выравнивание гистограммы – утилизируют менее изощренные глобальные операторы и позволяют настраивать вручную только яркость и контрастность снимка с расширенным ДД, сужают ДД, пытаясь сохранить контраст, или же урезают света так, чтобы они вошли в диапазон яркостей 16-битного изображения.
Наибольший интерес представляет четвертый способ – локальная адаптация. Микаэлла Райнрис и Джеспер Кристенсен работают именно с ним. Поэтому о нем немного подробнее. Основной инструмент здесь – тональная кривая и гистограмма яркостей. Смещая кривую, разбитую якорными точками, вы сможете перераспределить уровни контрастности по всему ДД. Вероятно, понадобится обозначить несколько тональных областей вместо традиционного разделения на тени, средние тона, света. Принцип настройки данной кривой абсолютно идентичен тому, на котором зиждется фотошоповский инструмент Curves. А вот функции ползунков Radius и Threshold в данном контексте весьма специфические. Они контролируют уровень изменения локального контраста – то есть улучшают детализацию в масштабе небольших областей снимка. Тогда как кривая, напротив, корректирует параметры ДД на уровне всего изображения. Радиус указывает количество пикселей, которые оператор «тоун маппинга» будет считать локальными. Например, радиус в 16 пикселей означает, что области подгонки контрастности будут очень плотными. Тональные сдвиги примут явно заметный, слишком обработанный характер, HDR-изображение хотя и расцветет богатством деталей, но предстанет абсолютно неестественным, лишенным и намека на фотографию. Большой радиус тоже не выход – картинка получится более натуральной, но скучноватой в плане деталей, лишенной жизни. Второй параметр – порог – устанавливает предел разницы яркостей соседних пикселей, который позволит включить их в одну и ту же локальную область регулировки контрастности. Оптимальный диапазон значения порога – 0,5-1. После освоения вышеуказанных компонентов процесс «тоун маппинга» можно считать благополучно завершенным.
С Photomatix в мир HDR
Специально для всех нуждающихся в фотоснимках с очень широким ДД в 2003 г. французы придумали программку Photomatix, последняя версия которой сегодня доступна для бесплатного скачивания (полностью функциональна, только оставляет на снимке свой «водяной знак»). Многие любители HDR-затравки считают ее более расторопной, когда дело касается подгонки тональностей и интенсивностей 32-битного изображения с урезанными параметрами битовой глубины устройств вывода. К ним принадлежит и итальянец Джанлука Несполи. Приведем его слова: «HDR-картинки, генерированные этой программой, отличает лучшая проработка деталей неба и деревьев, они не выглядят слишком “пластмассовыми”, демонстрируют более высокий уровень контрастности и цветовой тональности. Единственный минус Photomatix – усиление вместе со всеми достоинствами и некоторых недостатков изображения, таких как шумы и артефакты JPEG-компрессии». Правда, компания-разработчик MultimediaPhoto SARL обещает устранить и эти нюансы, а кроме того, c теми же шумами, например,
неплохо справляются программы вроде Neat Image.
Помимо возможности осуществлять «тоун маппинг», Photomatix располагает несколькими дополнительными настройками уровня экспозиции, а ее алгоритм соотнесения тональностей можно применять даже к 16-битным TIFF’ам. Так же, как и в Photoshop, сначала на основе отдельных снимков с варьирующей экспозицией необходимо создать 32-битное HDR-соединение. Для этого у программы есть опция Generate HDR. Подтвердите значения экспозиционного интервала, выберите стандартную тональную кривую (рекомендовано) – и Photomatix готов будет представить вам свою версию HDR-изображения. Файл будет «весить» примерно столько же, сколько и фотошоповская версия, и иметь то же расширение – .hdr или.exr, – под которым его можно сохранить до начала процесса «тоун маппинга». Последний инициируется путем выбора соответствующей команды в главном меню HDRI программы. В его рабочем окошке вмещается много различных настроек, способных привести в замешательство. На самом деле, ничего сложного здесь нет. Гистограмма показывает распределение яркостей пропущенного через «тоун маппинг» снимка. Ползунок Strength определяет уровень локального контраста; параметры Luminosity и Color Saturation отвечают соответственно за яркость и цветовую насыщенность. Точки отсечения светлой и темной областей гистограммы вполне можно оставить по умолчанию. Photomatix предлагает всего четыре установки функции сглаживания контрастности в противоположность более точным настройкам Photoshop в пределах от 1 до 250. По правде говоря, такой уровень контроля не всегда желателен. Вряд ли непрофессионалу важна та разница, которая будет присутствовать между значениями радиуса сглаживания, скажем, 70, 71 и 72. Настройка микроконтраста обращается к локальному уровню, однако в случае использования изначально шумных или насыщенных всякого рода артефактами снимков, ею не следует злоупотреблять.
Когда «тоун маппинг» примирит монитор с HDR-изображением…
…можно подключать предыдущие навыки по обращению с Photoshop и редактировать HDR-изображение на свой вкус, страх и риск. Помните, пока что отношение фотопублики к продуктам искусственно созданной широкодиапазонной природы неоднозначное. «Если хотите иметь успех на этой ниве, постарайтесь выработать свой оригинальный стиль, а не упражняйтесь в повторении, – напутствует Микаэлла Райнрис. – В таком тонком и повсеместно копируемом на любительском уровне деле, как HDR, это особенно важно».
В постобработке, следующей за процессом «тоун маппинга», фотохудожница отдает предпочтение маскам слоев и размытиям на них (инструменты группы Blur, в частности – размытие по Гауссу). Из режимов наложения слоев Микаэлла любит Overlay и Color, позволяющие достигать требуемого уровня контрастности. Густаво Оренштайн и Джеспер Кристенсен добавляют сюда еще и Soft Overlay. Джеспер работает на таком слое кисточками инструментов «осветлитель» и «затемнитель». Первый помогает четче прорисовать детали в тенях, второй – создать драматическую контрастность. Без них в своей работе не обходится и Микаэлла, и Густаво. Тогда как Джанлука предпочитает затемнителю и осветлителю обычную рисовальную кисточку в режиме наложения слоев Overlay с минимальным уровнем прозрачности (opacity). Для придания изображениям должной цветовой насыщенности он работает с настройками hue/saturation и selective color. Джанлука создает дубликат слоя; к нему он применяет фильтр «размытие по Гауссу» (радиус 4 пикселя, показатель прозрачности – 13 %) и накладывает в режиме multiply или overlay. Затем он вызывает еще один дубликат и занимается уровнями насыщенности отдельных цветов в нем, особенно – белого, черного и нейтрального серого, которые и создают дополнительное ощущение широкого динамического диапазона. Из четверых наших экспертов только Джеспер Кристенсен активно использует цифровые графические планшеты Wacom, но мог бы прекрасно обходиться и без них – устройства нужны ему для других проектов.
Вообще говоря, постобработка HDR-изображений – вопрос, конечно, сугубо личный, зависящий не столько от технических возможностей программы, сколько от субъективного творческого видения художника. И было бы бессмысленно рассказывать о сотнях индивидуальных предпочтений каждого из сегодняшних авторов. Кто-то, как Микаэлла, стремится к простоте в выборе инструментов реализации визуальных задач. Для нее, например, фотошоповский shadow/highlight дороже всех самых дорогих и изощренных плагинов. А кто-то, вроде маэстро Оренштайна, продолжает экспериментировать с Photomatix, HDR Shop, Light Gen и тому подобными расширителями ДД. Бывалым пользователям графических редакторов, вероятно, важнее сконцентрироваться не на освоении новых программных продуктов, а на выработке собственного стиля и воспитании в себе целостного творческого начала. Тогда как новичкам хотелось бы посоветовать не потеряться в технических моментах, а постараться начать с формирования высокого художественного видения и места работ этого изумительного и перспективного жанра фотоиллюстрации.
Источник: dphotographer.com.ua
Как выбрать камеру видеонаблюдения по завуалированным характеристикам
Все мы умеем выбирать камеру, но не все умеем делать это правильно. В то время как сеть завалена обзорами на любую технику, исчезающее мало становится материалов, в которых действительно грамотно раскрываются возможности устройств.
Оптические приборы в этом отношении пострадали больше всего. Каждый человек знает про мегапиксели и разрешение, но когда речь заходит о более тонких материях, начинает «плавать». Если вы задумываетесь о покупке камеры (и не являетесь экспертом в этой области), полезно будет разобраться, что на самом деле означают непонятные аббревиатуры в характеристиках. Разобраться – это значит не только прочитать описание.
Про очевидное
Если начать гуглить «по каким характеристикам выбрать камеру видеонаблюдения», удастся познакомиться с удивительным миром интернета нулевых. Там, где еще обитают черно-белые камеры, аналоговые камеры, важность светочувствительности в люксах. Некоторые характеристики накладываются друг на друга (и взаимно аннигилируют) – не стоит об этом забывать.
Поэтому мы сосредоточимся на современных IP-камерах, поддерживающих облачный сервис Ivideon, и не будем касаться очевидных характеристик. Скорее всего, вы понимаете разницу между разрешением 1080р и720р, диагональным и горизонтальным углами обзора, а также знаете об инфракрасной светодиодной подсветке.
Однако часто в описании камер можно встретить аббревиатуры: 3DNR, AWB, AGC, WDR и другие. Что это такое и почему нельзя ориентироваться только на мегапиксели, разрешение и угол обзора? Важно ли вообще понимать все характеристики или достаточно один раз посмотреть пример видеозаписи выбранной камеры?
WDR (Wide Dynamic Range)
WDR (Wide Dynamic Range) – широкий динамический диапазон. Эта технология позволяет получать высокое качество изображения при любом перепаде уровней освещенности.
Динамический диапазон – это параметр камеры, характеризующий ее способность передать в изображении каждого кадра очень яркие и очень темные элементы сцены. Величину динамического диапазона обозначают в децибелах (дБ).
Динамический диапазон (ДД) реального участка территории обычно значительно превышает собственный ДД камеры, который в большинстве случаев находится на уровне 52−60 дБ: безоблачный солнечный день на улице – это 180 дБ, а хорошо освещенное помещение – от 126 дБ до 140 дБ.
Один из способов устранить этот недостаток – использовать математический алгоритм обработки каждого кадра изображения, в результате чего удается перераспределить яркость таким образом, чтобы весь кадр стал информационно насыщенным. Такая технология получила название Wide Dynamic Range, хотя на самом деле ничего общего с динамическим диапазоном она не имеет.
Камера без WDR не способна дать четкое изображение находящихся в тени объектов там, где есть как очень светлые, так и затененные участки или же свет падает сзади, например, если человек стоит на фоне ярко освещенного окна.
Типичные ситуации, когда сложно обойтись без WDR:
- наблюдение за входной дверью, когда снаружи светит солнце, а внутри расположено темное помещение – распространенный случай в магазинах и офисных помещениях;
- наблюдение за машинами, въезжающими в гараж или туннель;
- в транспорте, при наблюдении за периметром зданий и в других случаях, когда часть кадра находится под прямыми солнечными лучами, а другие части прячутся в глубоких тенях;
- при движении непосредственно к камере машин с яркими фарами;
- там, где есть большое количество отраженного света, например, в офисных зданиях или в торговых центрах.
Показатели WDR рассчитываются как отношение светимостей самого яркого и самого тусклого объекта, которые были захвачены матрицей. Для каждого кадра матрица делает несколько сканирований с разной выдержкой электронного затвора и формирует предварительные изображения – одно с длинной выдержкой для осветления всех темных частей кадра, другое с короткой выдержкой с более корректным отображением переосвещенных участков. После этого фрагменты с лучшей передачей контраста суммируются в результирующий кадр, сбалансированный по яркости.
BLC (Back Light Compensation)
Back Light Compensation – компенсация встречной засветки. Технология позволяет скомпенсировать ярко освещенный задний план для хорошей проработки объектов, расположенных на переднем плане. Из-за BLC теряется информация в ярко освещенных участках сцены, зато объекты на переднем плане становятся хорошо проработанными.
При BLC микропроцессор выравнивает (сглаживает) освещенность по всему полю зрения камеры. Большинство камер сегодня имеют поддержку BLC, но она не идет ни в какое сравнение с возможностями Wide Dynamic Range. В лучшем случае BLC помогает сбалансировать условия освещения, чтобы выяснить, что находится на переднем плане изображения, однако фон остается размытым.
3DNR (3-Dimensional Noise Reduction)
3-Dimensional Noise Reduction (3DNR) – трехмерное шумоподавление. Технология 3DNR подавляет в изображении шумы, проявляющиеся при слабом освещении в условиях, когда в кадре присутствуют быстро двигающиеся объекты. 3DNR анализирует различия между последовательными кадрами видеоизображения и подавляет шумы с помощью перемешивания данных на кадре.
К недостаткам алгоритма можно отнести дополнительные дефекты и смазывания, проявляющиеся при движении в кадре. Однако, если режим шумоподавления включается только для отдельных кадров, то итоговое изображение получается и не шумным, и качественным.
AWB (Auto White Balance)
AWB – автоматический баланс белого цвета. Функция компенсирует искажения цветов, вызванные разными источниками освещения (солнечный свет, лампа накаливания или флуоресцентный свет), отсекая ненужный спектр света. При этом камера устанавливает температуру изображения цвета таким образом, чтобы получившиеся цвета на изображении имели те же оттенки и выглядели в точности так же, как происходит их восприятие невооруженным глазом.
Существует несколько различных алгоритмов AWB, но большинство из них подразделяются на две категории. Глобальные алгоритмы используют все пиксели изображения для оценки цветовой температуры. Локальные алгоритмы используют только подмножество пикселей на основе предопределенных правил отбора для этой задачи. Существуют также гибридные алгоритмы, которые выбирают лучший алгоритм на основе содержимого изображения.
AGC (Automatic Gain Control)
AGC – автоматическая регулировка усиления сигнала. Технология предназначена для улучшения качества изображения при недостаточном или чрезмерном освещении.
AGC начинает работать, когда освещенность на объекте имеет низкий уровень, а полностью открытая диафрагма не в состоянии компенсировать недостаток освещенности. Камера автоматически усилит видеосигнал, полученный в условиях более низкой освещенности, чтобы оптимизировать четкость изображения на плохо освещенной сцене. Однако чем больше будет усиливаться сигнал, тем выше будет и уровень помех на экране.
ROI (Region Of Interest)
Region Of Interest – область интереса. Технология позволяет устанавливать повышенное качество изображения в выделенных областях, выбранных на экране. Выделенная на кадре область записывается с максимальным качеством, остальная часть изображения записывается с меньшим разрешением. Использование данной функции значительно снижает трафик и место, занимаемое под архив.
Smart IR
ИК-подсветка засвечивает лицо, затрудняя опознание, когда человек близко подходит к камере. Smart IR – это технология, которая позволяет регулировать интенсивность ИК светодиодов камеры для компенсации расстояния до объекта. При съемке в темноте адаптивная ИК подсветка Smart IR автоматически регулирует мощность излучения в зависимости от расстояния до наблюдаемого объекта в кадре, позволяя получить изображение без пересвеченных областей.
HLC (High Light Compensation)
Реализации технологии HLC в камерах Hikvision
High light compensation — компенсация яркой засветки. В автоматическом режиме отслеживается точка яркой засветки и делается повторный кадр с игнорированием данных от ячеек матрицы в этом месте. HLC применяется для устранения отрицательного влияния на работу камеры ярких источник света попадающих в объектив. Наиболее часто этот режим используется при борьбе со светом автомобильных фар. Кроме того, HLC помогает устранить хоть небольшую, но заметную засветку вокруг уличных фонарей.
Заключение
На видео выше представлены записи с двух камер видеонаблюдения (Hikvision и Nobelic), у которых технические характеристики практически идентичны. Как видите, запись камеры ведут по-разному. Нельзя однозначно сказать, что какой-то поток видеоданных получился хуже другого. Тем не менее, разница видна невооруженным взглядом. На каком решении остановить свой выбор – зависит только от ваших потребностей, личного мнения и соотношений по другим параметрам (например, по цене).
Какое изображение лучше?
Мы перечислили далеко не все дополнительные возможности камер, но разобрали те моменты, которые вызывают больше всего вопросов у наших пользователей. Есть вы хотите улучшить свои знания в теории, есть множество разных источников – например книга А. Гонта «Практическое пособие по видеонаблюдению». Однако одной лишь теории не хватит, чтобы выбрать камеру видеонаблюдения. Всегда смотрите примеры видео!
Как запечатлеть все тона снимаемой сцены
Динамический диапазон – жизненно важный «òрган» вашей фотографии: или даст путёвку в жизнь или отправит в мусорную корзину. В этом уроке мы объясним, как передать на снимке все тона, присутствующие в сцене, и обсудим способы расширения динамического диапазона.
Если вы когда-нибудь фотографировали при прямом солнечном свете или сюжет, где присутствовали яркие блики и глубокие тени, то наверняка сталкивались с проблемой: фотоаппарат запечатлевает детали либо в бликах, либо в тенях, либо ни там, ни там.
Это одна из самых распространённых трудностей, с которой вы будете сталкиваться. Она не связана с экспозицией. Причина явления заключается в разнице между яркостью бликов и яркостью теней в снимаемой сцене – в её, так называемом, динамическом или тоновом диапазоне. Разница может быть настолько большой, что вы не сможете запечатлеть и блики, и тени, какой бы ни была экспозиция.
Светочувствительный сенсор цифрового фотоаппарата может различать тона из широкого диапазона, но ширина последнего не бесконечна. Как только вы соберётесь сфотографировать сюжет, тоновый диапазон которого, другими словами разница яркостей, шире динамического диапазона сенсора, возникнет проблема, описанная выше.
В этом уроке мы приведём действенные рекомендации. Мы покажем, как распознавать и оценивать проблему, а затем справляться с ней. Начнём с ответов на наиболее насущные вопросы фотографов о динамическом диапазоне. С чем его, вообще, едят?
Всё, что вам нужно знать о динамическом диапазоне
Что такое «динамический диапазон»?
Это способ, которым описываются тона на изображении: от ярчайших бликов до глубочайших теней. Динамический диапазон измеряется в «значениях экспозиции» (EV) или, что то же самое, в «стопах».
Некоторые снимаемые сцены обладают широким тоновым диапазоном. Это означает, что между яркостями самого тёмного участка сцены и самого светлого её участка значительная разница. Она измеряется в EV. Типичный представитель таких сцен – съёмка силуэта на фоне заходящего солнца. Существуют сцены с более узким тоновым диапазоном.
Как вы могли отметить, следует рассматривать два динамических диапазона: снимаемой сцены и светочувствительного сенсора фотоаппарата.
- Подробнее о динамическом диапазоне светочувствительного сенсора, отличиях RAW и JPEG форматов, вы можете узнать из статьи «Основы фотографии #4.4».
Одинаковы ли динамические диапазоны камеры и сцены?
Сенсор, встроенный в ваш фотоаппарат, за один щелчок затвора может запечатлеть тона только из определённого динамического диапазона. Пока разница между яркостями бликов и теней в снимаемой сцене укладывается в него, на фотографии вы увидите как детали в светах, так и детали в тенях.
Например, если динамический диапазон фотоаппарата равняется 8 EV, а разница яркостей интенсивных бликов и глубоких теней – 6 EV, то вы сохраните на изображении все детали сцены. Соответственно, в противоположном случае фотография будет содержать либо чёрные, «заваленные», пятна-тени, которые в реальности вовсе не чёрные, или белые, «пересвеченные», блики, которые в снимаемой сцене имеют вполне определённый цвет. А в некоторых случаях, картинка будет страдать и от «завала», и от «пересвета».
Автор фотографии – Маркус Хокинс (Marcus Hawkins).
У всех ли камер динамический диапазон одинаковый?
Нет, светочувствительные сенсоры различаются по своим возможностям. Чем выше динамический диапазон фотоаппарата, те больше деталей он способен запечатлеть. Например, динамический диапазон камеры Nikon D610 измеряется в пределах 13 и 14,4 EV при чувствительности ISO равной 100.
Как узнать, что камера справится с тоновым диапазоном снимаемой сцены?
Во времена плёночной фотографии ответу на этот вопрос предшествовал кропотливый труд. Вам нужно было замерить яркость самых светлых участков сцены и яркость самых тёмных её участков. Затем вычислить разницу яркостей. Наконец, проверить, что динамический диапазон плёнки, на которую вы планируете снимать, может охватить найденный тоновый диапазон снимаемой сцены, и узнать, какая экспозиция удовлетворяет этому условию.
В цифровой фотографии вам достаточно изучить гистограмму, высвечивающуюся на экране фотоаппарата. Всё что вам нужно проверить: распределение тонов снимаемой сцены (ширина гистограммы) укладывается в динамический диапазон камеры (ширина таблицы). Если гистограмма «обрезается» краями таблицы, то налицо потеря деталей. Так, «обрезание» правым краем означает потерю деталей в бликах, «обрезание» левым краем – в тенях. После того как гистограмма помогла вам прояснить ситуацию, вам следует правильно подобрать экспозицию, чтобы поместить тоновый диапазон снимаемой сцены в динамический диапазон камеры.
Очень часто, проблема с динамическим диапазоном решается именно таким способом: вы меняете экспозицию и делаете повторный снимок. Однако, бывают ситуации, когда снимаемая сцена обладает широким распределением яркостей, то есть широкой гистограммой. Широкой настолько, что заключить её между краями таблицы не удаётся ни с какой экспозицией.
В пасмурную погоду тоновый диапазон снимаемой сцены достаточно узкий – гистограмма получается узкой. Здесь если возникает проблема, то она решается подбором экспозиции. А в солнечную погоду тоновый диапазон – а вместе с ним и гистограмма – расширяется настолько, что «уместить» её в границы таблицы не получается ни при каких ухищрениях.
Что делать?
Гистограмма показывает распределение тонов во всей сцене, а не лишь тех участков, которые вам интересны! Поэтому вполне нормальным считается «потерять» тени в некоторых малозначимых участках сюжета, особенно, если вы намерены создать чёрно-белое изображение.
Получается, руководствуйтесь гистограммой, а принимайте решение своими глазами. Замерить яркость в определённом участке снимаемой сцены можно с помощью точечного экспозамера – режим измерения экспозиции, который вы можете найти в любой зеркальной цифровой камере. Измерив экспозицию в самом светлом и самом тёмном участках сюжета, вы можете оценить, есть ли хотя бы одна экспозиция, общая для обоих участков.
В качестве альтернативы вы можете фотографировать в формате RAW. Камера запечатлеет до 1 EV тонов больше, чем в съёмке в формате JPEG. Дополнительные детали вы сможете извлечь из RAW-файла на этапе обработки, в RAW-интерпретаторе. Кстати, вы не увидите во время съёмки преимуществ RAW-формата: гистограмма отображает возможности изображения, которое появляется после спуска затвора на экране фотоаппарата. А это изображение – JPEG-снимок, даже если вы фотографируете в RAW.
В съёмке в формате RAW вам как и прежде следует аккуратно выбирать экспозицию. Однако, вы располагаете здесь небольшой свободой, что может помочь вам запечатлеть очень глубокие тени или очень яркие блики.
Иногда даже съёмка в формате RAW не выручает: вы всё равно упускаете детали в светлых и/или тёмных участках сцены. Вот тогда вы можете открыть для себя мир Фотографий с Широким Тоновым Диапазоном (HDR-фотография).
Поможет ли здесь компенсация экспозиции?
Нет. Эта функция влияет на светлоту всего снимка. Вы можете сместить гистограмму влево или вправо, чтобы избежать «обрезания» справа или слева, соответственно. Но динамические диапазоны сенсора и снимаемой сцены не изменятся.
Если тоновый диапазон сцены настолько широк, что сенсор камеры не может его зафиксировать полностью, то определите для себя наиболее важные детали: они в светах или в тенях? Затем выберите соответствующую экспозицию. Обычно, целесообразно экспонировать по бликам, другими словами, уменьшать экспозицию. Это позволяет сохранить детали в светах.
Ещё, некоторые настройки камеры могут расширить имеющийся динамический диапазон сенсора.
Какие это настройки?
Динамический диапазон светочувствительного сенсора тем шире, чем меньше чувствительность ISO. Также, снимать следует в RAW-формате. RAW-изображение сохраняет гораздо больше информации, чем JPEG-изображение. Другими словами, тоновая плотность RAW-снимка выше, а значит вам проще восстановить детали в случае недоэкспозиции или переэкспозиции.
В большинстве фотоаппаратов вы найдёте функцию, которая автоматически восстанавливает детали в тенях или бликах. В Nikon-камерах она называется «Active D-Lighting», в Canon-камерах – «Auto Lighting Optimizer». Функция высветляет тени, тем самым имитирует расширение динамического диапазона светочувствительного сенсора. Обратите внимание, она работает в съёмке в формате JPEG.
Наконец, вы можете создать HDR-фотографию. Само название говорит о сути: изображение с широким тоновым диапазоном. Если не удаётся охватить тоновый диапазон снимаемой сцены одной экспозицией, то почему бы не сделать несколько снимков с разными экспозициями и не соединить их. Объединить исходные снимки вы можете с помощью специальной программы, например, Photomatix. Таким способом вы представите на итоговом изображении гораздо больше тонов снимаемой сцены, чем с помощью традиционного подхода: фотографировании с одной экспозицией. Кстати, в некоторые фотоаппараты встраивается функция HDR-съёмки, что может существенно упростить вам жизнь.
С HDR-изображениями легко переусердствовать: итоговая картинка может получиться совершенно нереалистичной. Если HDR-фотография не ваша стихия, то обратите внимание на другие способы сжатия динамического диапазона. Особенно, если вы планируете фотографировать высококонтрастную сцену.
О каких способах идёт речь?
Вы можете воспользоваться вспышками и отражателями, чтобы подсветить глубокие тени, детали которых в противном случае на снимке не отразятся. Фотографы, снимающие пейзажи, делают обратное: используют градиентные фильтры нейтральной плотности, чтобы затемнить блики и, тем самым, сохранить в них детали.
Градиентные фильтры нейтральной плотности с одного конца прозрачные, а с другого конца затемнённые. Если расположить затемнённую часть фильтра напротив яркого неба, а прозрачную часть – напротив ландшафта, то изображение неба получится затемнённым и, соответственно, его яркость приблизится к яркости ландшафта.
В настоящее время, пейзажисты используют другой приём – съёмка в две экспозиции. Экспозиция для одного снимка определяется по ландшафту, а экспозиция второго снимка – по небу. Затем два изображения «складываются» в Photoshop или в другом графическом редакторе.
Проблемные сцены
Сюжеты с контровым освещением
Если источник света располагается позади снимаемого объекта, то сторона объекта, обращённая к камере, находится в тени. Разница в яркостях фона и объекта получается очень большой.
Пейзажи с ярким небом
Переэкспонированное небо портит фотографии. В облачную погоду яркость неба может на несколько EV превышать яркость остальных частей снимаемой сцены. Здесь помогает градиентный фильтр: «понижая» яркость неба, он сужает тоновый диапазон сцены.
Интерьеры/экстерьеры
Разница освещённостей внутри и снаружи помещения в дневное время, а также разница освещённостей различных участков здания, залитого солнечным светом, несомненно превышает динамический диапазон сенсора – одной экспозиции будет недостаточно. Чтобы проявить детали за окнами, в которые врывается солнечный свет, вам придётся создавать несколько снимков с различными экспозициями.
Сюжеты с источниками света в кадре
Если в кадр попадает источник света, то область свечения будет слишком яркой в сравнении с остальными частями снимаемой сцены. Просто примите тот факт, что изображение источника получится переэкспонированным.
Решения
Пейзажи
Обычно гистограммы для подобных сюжетов содержат два высоких пика: один обозначает яркое небо, другой – тёмную землю. Скорее всего, вы не сможете охватить одновременно и блики, и тени одной экспозицией без дополнительных приспособлений.
Градиентный фильтр нейтральной плотности поможет в этой ситуации.
Портреты в контровом освещении
Когда вы фотографируете лицо человека на фоне светлого неба и выбираете экспозицию по модели, фон изображается слишком светлым. Если вы настраиваете экспозицию по небу, то получаете силуэт модели.
Воспользуйтесь вспышкой или отражателем. Установите экспозицию по светлому фону и подсветите лицо модели со стороны камеры.
Солнце и тень
В солнечный день вы можете столкнуться с высококонтрастной сценой: разница между участками, залитыми светом, и затенёнными областями может быть настолько большой, что сенсор едва ли «втиснет» её в JPEG-фотографию.
Снимайте в формате RAW. На этапе обработки вы сможете восстановить детали в «пересвеченных» или «заваленных» областях снимка.
Рассветы и закаты
На закате небо, чаще всего, значительно ярче ландшафта.
Предыдущий трюк может быть полезным, но его, иногда, недостаточно. Решение – съёмка в две экспозиции или HDR-фотография. Другими словами, создайте серию снимков с различной экспозицией, чтобы на этапе обработки «собрать» из них одно изображение, где все детали сохраняются.
Измеряем тоновый диапазон снимаемой сцены
Чтобы выбрать оптимальную экспозицию, вам нужно изучить распределение яркостей в сюжете.
Перейдите в ручной режим
В ручном режиме съёмки («M») вы можете самостоятельно оценивать экспозицию по показанию экспонометра.
Укажите значение диафрагмы
Когда вы выберите диафрагменное число, вам останется лишь подобрать соответствующую выдержку. Установите значение диафрагмы равным 8.
Включите точечный режим экспозамера
В точечном режиме (Spot exposure measuring mode) экспонометр фотоаппарата замеряет освещённость в маленьком участке изображения вокруг активной точки фокусировки. Кстати, включите дополнительно ручной выбор точек фокусировки (Single-point AF Mode).
Определите экспозицию в наиболее ярком участке сцены
Расположите активную точку фокусировки на самом ярком, на ваш взгляд, участке сюжета (только не на солнце). Затем подберите выдержку так, чтобы датчик экспонометра указывал на 0. У нас получилась 1/500 секунды.
Определите экспозицию в наиболее тёмном участке сцены
Теперь проделайте действия из предыдущего шага для самой тёмной области сюжета. У нас выдержка получилась равной 1/30 секунды.
Посчитайте разницу
Если разница между выдержками, определёнными Вами на предыдущих шагах, не превышает 4 EV, как в нашем случае, то установите среднюю выдержку. В нашем примере она равняется 1/125 секунды.
- Если вы хотите узнать, почему между 1/30 и 1/500 секунды 4 EV, почему выдержка равная 1/125 секунды является средней между 1/30 и 1/500 секунды, то обратитесь к статье Основы фотографии #1.
Настраиваем фотоаппарат на широкий динамический диапазон
Совет #1. Снимайте в формате RAW
RAW-изображение хранит 12 или 14 бит информации вместо 8 бит у JPEG-снимка. Это даёт RAW-картинке преимущество на этапе обработки: вы можете проявить детали в очень тёмных и очень светлых областях фотографии и, тем самым, отобразить на снимке более широкий тоновый диапазон.
Совет #2. Пользуйтесь функцией расширения динамического диапазона
Производители фотоаппаратов включают в свои камеры оригинальные функции, восстанавливающие на существующем изображении детали в «пересвеченных» и «заваленных» областях снимка. Например, у Canon эта функция называется «Auto Lighting Optimizer». Часто, используя подобные функции, вы можете выбирать силу эффекта, чтобы отрегулировать «натуральность» результата.
Совет #3. Проверяйте гистограмму аккуратно
Когда вы просматриваете гистограмму, держите в голове мысль: «В RAW-файле содержится другая информация». Дело в том что гистограмма отражает ситуацию с JPEG-изображением, к которому во время съёмки уже были применены настройки фотоаппарата.
Снимаем HDR-изображения с помощью функции, встроенной в камеру
Шаг #1. Выберите ширину динамического диапазона
В режиме HDR-съёмки фотоаппарат создаёт быструю последовательность из двух-трёх кадров, затем накладывает их друг на друга, и результат наложения сохраняет в формате JPEG. Вы можете как самостоятельно определять разницу в экспозициях кадров, таки и доверять выбор камере. Чем больше число (разница), тем шире динамический диапазон итогового изображения
Шаг #2. Установите режим HDR-обработки
На HDR-изображении в глубоких тенях и ярких бликах проявляются детали: тени осветляются, блики затемняются. В итоге, итоговая картинка может выглядеть плоской. Вы можете повлиять на результат, выбрав походящий режим HDR-обработки. Тем самым, вы сможете насытить цвета, повысить контрастность и сделать линии более чёткими, другими словами, придать изображению живописный и графичный вид.
Шаг #3. Сохраните оригинальные снимки
Несмотря на то что «на выходе» получается HDR-изображение в формате JPEG, вы можете сохранить исходные снимки на карте памяти. А затем, используя специальное программное обеспечение, «объединить» фотографии в HDR-изображение так, как Вы хотите. В Canon 5D Mark III вы можете сохранить исходные снимки даже в формате RAW. Это позволит вам достичь наибольших качества и аккуратности «объединения».
Автор статьи: Marcus Hawkins
Динамический диапазон в фотографии — это… Что такое Динамический диапазон в фотографии?
Для характеристики динамического диапазона пленок обычно используют понятие фотографическая широта (фотоширота), показывающая тот диапазон яркостей, который пленка может передать без искажений, с равным контрастом (диапазон яркостей линейной части характеристической кривой плёнки). Полный ДД плёнки обычно несколько шире фотошироты и виден на графике характеристической кривой плёнки.
Фотоширота слайда составляет 5-6EV, профессионального негатива — около 9EV, любительского негатива — 10EV, киноплёнки — до 14EV.
Расширение динамического диапазона
Динамического диапазона современных камер и пленок недостаточно для того, чтобы передать любой сюжет окружающего мира. Особенно это заметно при съемке на слайд или компактную цифровую камеру, которые зачастую не могут передать даже яркий дневной пейзаж в средней полосе России, если там есть объекты в тени (а диапазон яркостей ночного сюжета с искусственным освещением и глубокими тенями может доходить до 20EV). Эта проблема решается двумя путями:
- увеличение динамического диапазона камер (видеокамеры для систем наблюдения имеют заметно больший динамический диапазон, чем фотокамеры, однако это достигается путем ухудшения других характеристик камеры; каждый год выходят новые модели профессиональных камер с лучшими характеристиками, при этом их динамический диапазон медленно растет)
- комбинирование изображений, снятых с разной экспозицией (технология HDR в фотографии), в результате которого возникает единое изображение, содержащее все детали из всех исходных изображений, как в крайних тенях, так и в максимальных светах.
HDRi фотография и три снимка, из которых она собрана
Оба пути требуют решения двух проблем:
- Выбор формата файла, в который можно записать изображение с расширенным диапазоном яркостей (обычные 8-битные sRGB файлы для этого не подходят). На сегодня самыми популярным форматами являются Radiance HDR, Open EXR, а так же Microsoft HD Photo, Adobe Photoshop PSD, RAW-файлы зеркальных цифровых камер с большим динамическим диапазоном.
- Отображение фотографии с большим диапазоном яркостей на мониторах и фотобумаге, имеющих существенно меньший максимальный диапазон яркостей (contrast ratio). Данная проблема решается с помощью одного из двух методов:
- тональная компрессия, при которой большой диапазон яркостей уменьшается в небольшой диапазон бумаги, монитора или 8-битного sRGB-файла путем уменьшения контраста всего изображения, единым образом для всех пикселей изображения;
- тональное отображение (tone mapping, тонмаппинг), при котором производится нелинейное изменение яркостей пикселей, на разную величину для разных областей изображения, при этом сохраняется (или даже увеличивается) оригинальный контраст, однако тени могут выглядеть неестественно светлыми, и на фотографии могут появиться ореолы на границах областей с разным изменением яркости.
Пример изображения, созданного по технологии HDR из трех исходников, и исходных фотографий к нему, можно посмотреть здесь: http://skoblov.livejournal.com/4190.html
Тонмаппинг также может использоваться и для обработки изображений с небольшим диапазоном яркостей для повышения локального контраста.
Из-за способности тонмаппинга выдавать «фантастические» картинки в стиле компьютерных игр, и массового представления таких фотографий с вывеской «HDR» (даже полученных из одного изображения с небольшим диапазоном яркостей) у большинства профессиональных фотографов и опытных любителей выработалось стойкое отвращение к технологии расширения динамического диапазона из-за неверного мнения о том, что она нужна для получения таких картинок (приведенный выше пример показывает использование методов HDR для получения нормального реалистического изображения).
См. также
Ссылки
- Определения основных понятий:
- БСЭ, статья «фотографическая широта»
- Горохов П. К. «Толковый словарь по радиоэлектронике. Основные термины» — М.: Рус. яз., 1993
- Фотоширота пленок и ДД фотоаппаратов
- Форматы файлов:
HDR технология – всё, что вы должны знать
Каждый, кто хоть немного интересовался современными телевизорами, по всей вероятности, встречался с аббревиатурой HDR. В маркетинговых сообщениях «HDR TV» – это устройство, которое позволит вам увидеть прекрасную и чрезвычайно естественную картинку. Всё замечательно, но что конкретно представляет собой этот HDR? Мы объясним не только это, но и какие преимущества HDR даёт зрителю.
HDR – это аббревиатура от англоязычного термина High Dynamic Range, что можно перевести как «широкий динамический диапазон». Этот термин относится к относительно новому – доступно в течение нескольких лет – способу представления изображения на различных дисплеях и чаще всего относится к телевизорам, но также касается мониторов или контента.
Главная задача HDR – это представление изображения как можно ближе к тому, как воспринимает окружающую среду человеческий глаз. Однако, это не так просто, как может показаться.
HDR – что это такое
В очень большом упрощении, HDR – это способ воспроизведения изображения, которое будет ближе к тому, как мы воспринимаем окружающий мир через зрение. В ходе эволюции наши глаза стали очень чувствительным органом, реагирующим на свет. С одной стороны, видеть звезды в безлунную ночь для нас не проблема, с другой – мы можем смотреть на небо при ярком солнце без каких-либо препятствий (но, напомним, что смотреть прямо на солнце нельзя).
Ещё не так давно – в первом десятилетии XXI века – видео или любые другие материалы HDR практически не были доступны, тем не менее стоит указать, что первый кадр HDR, зарегистрированный видеокамерой, был представлен уже в 1990 году Жоржем Корнуэйольсом.
В любом случае, в начале XXI века все телевизоры показывали изображение с гораздо более узким динамическим диапазоном тонов, в результате чего многие сцены не были представлены так, как это задумывали создатели фильмов. В сцене, в которой в одном кадре были очень светлые участки (например небо в солнечный день) и очень темные (например, вход в пещеру) не было способа демонстрации кадра на домашнем телевизоре, чтобы можно было увидеть все детали сцены. Разрешение изображения здесь ни при чем – речь идёт о яркости и цветах, а также об их диапазоне, то есть диапазоне тонов кадра.
Ситуацию изменила технология HDR, благодаря которой изображение на экране характеризуется значительно более высокой динамикой тонов. Изображение с расширенным динамическим диапазоном отличается очень большим шагом между темными и светлыми областями, в которых зритель не в состоянии распознать важные детали кадра (в недоэкспонированных областей ничего не видно, в переэкспонированных – белое пятно).
Изображение HDR характеризуется, кроме того, точным отображением всех полутонов в кадре. Цель технологии HDR очевидна – повышение реальности текущей сцены на экране современного телевизора. В сочетании с доступным сегодня очень высоким разрешением 4K, HDR позволяет получить очень высокое качество изображения, которое ещё несколько лет назад было вне досягаемости даже самых дорогих телевизоров. В результате мы можем наблюдать естественные восходы и закаты солнца или световые эффекты идентичные тем, которые мы видим каждый день в доме или на улице.
Основные типы технологии HDR
В настоящее время функционируют четыре – в значительной степени совместимых друг с другом – стандарта HDR-изображения: HDR10, HDR10+, Dolby Vision и HLG. И ничего больше – если вы увидите где-то надпись «HDR1000» или «DisplayHDR 600», это не имеет ничего общего со спецификацией HDR. Для нас, потребителей, наиболее важными являются эти четыре стандарты.
Чем они отличаются?
- HDR10 – базовый стандарт изображения HDR с 10-битной обработкой цвета. В этом стандарте кодирования метаданных о динамике тонов, одно и то же содержание (видео) хранит усредненные метаданные (статические) о расширенной динамике для всего зарегистрированного в HDR материала. Стандартный, самый распространенный, но – с точки зрения возможностей и качества изображения – это самый слабый вариант.
- HDR10+ – обновленная форма стандарта HDR10. Кодирование изображения по-прежнему 10-битное, но главное отличие заключается в том, что метаданные об изображении закодированы динамически, а не статически, благодаря чему телевизор интерпретирует их в процессе просмотра фильма, отображая расширенную динамику тонов с разными характеристиками, в зависимости от сцены.
- Dolby Vision – самый совершенный с точки зрения возможностей стандарт качества изображения HDR; в этом случае мы получаем не только динамически кодированные метаданные независимо для каждой отображаемой сцены, но, кроме того, обработка данных осуществляется по 12 битам, благодаря чему телевизор может получить больше данных о тональном диапазоне сцены и лучше представить окончательную картинку на экране.
- HLG – сокращение от Hybrid Log Gamma – этот стандарт был создан, в первую очередь, для телевизионного контента, транслируемого в прямом эфире.
HDR – какое нужно оборудование
Если, в первую очередь, мы заботимся о качестве HDR-фильмов и имеем доступ к контенту, закодированному с использованием стандарта Dolby Vision, лучше всего выбрать телевизор с поддержкой Dolby Vision. В недавнем «слепом» тесте, проведенном в рамках мероприятия HDTVTest TV Shootout 2019, организованного в Великобритании, во главе со всемирно известным телевизионным экспертом Винсентом Тео, победителем стал телевизор LG OLED C9, набравший максимальное количество баллов.
Стоит отметить, что в соответствии с принципами слепого теста – оценщики изображение не имели понятия, какие модели телевизора в данный момент оценивают. На втором месте находится модель Panasonic OLED GZ2000. Это также отличное оборудование, но… в два раза дороже указанной модели LG OLED C9. Следовательно, именно C9 (а также модель-близнец LG OLED E9) на сегодняшний день – самый лучший выбор телевизора (и оправдан экономически), способного отображать контент HDR.
РАСШИРЕННЫЙ ДИНАМИЧЕСКИЙ ДИАПАЗОН – ФотоКто
Когда компьютер закончит обработку, он покажет окно с комбинированной гистограммой. Photoshop вычисляет точку белого, но в результате его вычислений яркие части изображения зачастую оказываются засвечены. Вы можете сдвинуть точку белого к правой границе пиков гистограммы, чтобы получить все яркие детали. Полученное значение применяется только в целях просмотра, его потребуется определить более точно позже. Нажав «OK», вы получите 32-битное HDR-изображение, которое можно в этот момент сохранить. Учтите, что изображение может в этот момент выглядеть достаточно тёмным; только после преобразования в 16 или 8-битное изображение (с использованием тонального отображения) оно станет более похожим на желаемый результат.
На этом этапе, в виде 32-битного файла HDR, к изображению могут быть применены лишь немногие способы обработки, так что хранить его в таком виде иначе, как в целях архивации, практически бесполезно. Одноа из доступных функций — компенсация экспозиции (Image>Adjustments>Exposure). Вы можете попробовать увеличить экспозицию, чтобы увидеть все скрытые детали в тенях, или уменьшить её, чтобы увидеть все скрытые яркие детали.
Использование тонального отображения HDR в Photoshop
В Adobe Photoshop преобразуем 32-битное HDR-изображение в 16 или 8-битный файл LDR, применив тональное отображение. Это потребует от нас принципиальных решений о типе тонального отображения, в зависимости от предмета съёмки и распределения яркости в фотографии.
Запустите преобразование изображения в обычное 16-битное (Image>Mode>16 Bits/Channel), и вы увидите инструмент преобразования HDR. Можно выбрать один из четырёх методов тонального отображения, как описано ниже.
Экспозиция и гамма
Этот метод даёт вам возможность скорректировать экспозицию и гамму вручную, что служит эквивалентом изменения яркости и контраста, соответственно.
Компрессия яркости
У этого метода нет параметров настройки, он применяет специальную тональную кривую, которая значительно сокращает контраст ярких частей, чтобы высветлить и сохранить контраст в остальном изображении.
Эквализация гистограммы
Этот метод пытается перераспределить гистограмму HDR в диапазон контрастности обычного 16 или 8-битного изображения. В нём применяется специальная тональная кривая, которая растягивает пики гистограммы, так чтобы она стала более однородной. Обычно это наилучшим образом работает для гистограмм, в которых есть несколько относительно узких пиков без пикселей в промежутках.
Локальная адаптация
Наиболее гибкий метод и, пожалуй, наиболее часто используемый фотографами. В отличие от трёх предыдущих, этот метод меняет яркость частей изображения на попиксельной основе (аналогично повышению локального контраста). Тем самым глаз обманывается, полагая, будто контрастность изображения выше, что зачастую критично для потерявших контрастность HDR-изображений. Этот метод позволяет изменять тональную кривую для лучшего соответствия изображению.
Прежде чем использовать любой из этих методов, сперва может быть полезно определить точки белого и чёрного, используя движки на гистограмме изображения. Нажмите на двойную стрелку рядом с пунктом «Тональные кривые и гистограмма» (Toning Curve and Histogram), чтобы получить гистограмму изображения и движки.
Напоследок хотим рассказать о параметрах настройки метода «локальной адаптации», т.к. он, вероятно, является наиболее используемым и обеспечивает максимальную степень свободы.
Тональная иерархия и контрастность изображения
В отличие от трёх остальных методов преобразования, локальная адаптация необязательно сохраняет общую иерархию тонов. Она транслирует интенсивности пикселей не цельной тональной кривой, а с учётом значений окружающих пикселей. Это означает, что в отличие от использования тональной кривой, тона на гистограмме могут быть не просто растянуты и сжаты, но могут и пересекаться в позициях. Визуально это означает, что часть изображения, которая изначально была темнее другой, может получить аналогичную яркость или даже стать ярче — пусть даже не на много.