Что такое стабилизатор изображения в фотоаппарате
Для чего нужен стабилизатор изображения в фотоаппарате и что это такое? С применением новых технологий фотокамеры становятся все легче и при работе с ними очень большая вероятность получить нечеткое изображения из-за дрожания рук или других случайных факторов влияющих на устойчивое положение объектива, особенно при съемке отдаленных объектов при их увеличении. Вот для решения таких проблем и применяется такое устройство фотокамеры как стабилизатор изображения (в некоторых фирмах может применяться название: компенсатор колебаний).
Конечно, отлично со стабилизацией изображения справляется штатив, но его применение из-за размеров не всегда оправдано, и штатив невозможно всегда носить с собой. Но если есть возможность, то отказываться от штатива для фотоаппарата не стоит.
Еще один простой способ стабилизации это уменьшить выдержку до величины меньшей обратному от фокусного расстояния (например, при фокусном расстоянии 108 мм выдержка должна быть меньше чем 1/125) и увеличить чувствительность, но при этом может появиться зернистость на изображении. Да и уменьшать выдержку не всегда позволяет малая освещенность.
Стабилизатор изображения может быть оптический или цифровой.
Оптическая система
При оптической стабилизации идет работа с блоком линз, то есть они сдвигаются на необходимое расстояние в сторону противоположную движению самой фотокамеры.
Такие устройства по цене больше других. Но преимуществом оптической системы может служить то, что стабилизированное изображение, которое попадает на матрицу, передается и в видоискатель и в систему автофокуса.
Так же еще есть система на основе перемещения матрицы. Эта система позволяет использовать почти любые объективы (уже не обязательна система оптической стабилизации в объективе), что важно для фотоаппаратов со сменными объективами, ведь объективы не дешевы. Но при такой стабилизации в видоискатель и в систему авто фокуса будет попадать нестабилизированное изображение и при большом фокусном расстоянии такая система теряет свою эффективность, потому что на больших расстояниях от объекта матрице приходиться слишком быстро двигаться и она перестает успевать за движением изображения.
Оптический стабилизатор изображения
Оптический стабилизатор не влияет на качество фотографии и хорошо работает при любом увеличении. Но из-за него может увеличиться размер фотокамеры и увеличиться его энергопотребление.
Цифровая система
При цифровой стабилизации (EIS Electronic (Digital) Image Stabilizer) идет вычисление сдвига процессором с помощью программ записанных в фотоаппарат, при этом теряется часть информации по краям матрицы.
То есть снимается изображение больше по размеру, чем мы видим на фотографии и при смещении фотокамеры видимая область изображения имеет возможность смещаться на матрице в противоположную сторону, но в пределах фактически снятого изображения.
Анализ сдвига идет на основе алгоритмов видеоанализа, которые могут распознать сдвиг изображения и компенсировать его. Для того, что бы не было дергания картинки при съемке в стабилизатор должны быть встроены функции, позволяющие отличить движущийся объект от движения камеры, то есть подвижные объекты не должны влиять на стабилизацию изображения.
Недостатком цифрового стабилизатора изображения является его плохая работа совместно с цифровым увеличением, проявляющаяся в появлении помех на изображении.
Дополнительно о стабилизации изображения
Для работы стабилизаторов в фотоаппарат встроены сенсоры, которые регистрируют смещение фотокамеры и его скорость и выдают сигналы или приводам для смещения элемента стабилизации или процессору для дальнейшей обработки в случае цифровой стабилизации.
Система стабилизации изображения позволяет подавить вибрации амплитудой 0,6-0,8 мм.
Применение систем стабилизации изображения позволяет увеличивать значение выдержки на 3-4 ступени, что позволит снимать при плохом освещении и при больших расстояниях до объекта.
Впервые оптический стабилизатор изображения был применен фирмой Canon в 1994 году. И получил он название: Image Stabilization (IS).
Другие фирмы тоже начали использовать такое новшество и по-своему называли его:
- Nikon — Vibration Reduction (VR),
- Panasonic — MEGA O.I.S.(Optical Image Stabilizer),
- Sony — Optical Steady Shot.
Стабилизацию на основе подвижной матрицы впервые применила фирма Konica Minolta в 2003 году, тогда она называлась Anti-Shake (антитряска).
Другие фирмы тоже выпускали такие системы и так называли ее:
- Sony — Super Steady Shot (SSS) — переработанная система Anti-Shake,
- Pentax — Shake Reduction (SR) — разработка Pentax,
- Olympus — Image Stabilizer (IS) — применяется в некоторых моделях зеркальных фотокамер и «ультразумах» Olympus.
Оптический стабилизатор изображения показывает лучшие результаты, чем цифровой. И при наличии средств и не строгом требовании к размерам аппарата выбирайте фотокамеру с оптической стабилизацией изображения.
Победители выставки EISA-2014.
Как выбрать фотоаппарат по характеристикам.

Характеристики основных узлов.
vybrat-tekhniku.ru
Стабилизаторы изображения встроенные в фототехнику
21 Апреля 2015
Нередко приходиться сталкиваться с ситуациями, когда нет возможности выставить необходимые параметры для получения качественного фото при съемке с рук. Или нельзя использовать вспышку или другое осветительное оборудование в условиях недостаточной освещенности. Короче говоря, когда даже сильное поднятие ISO и наличие светосильной оптики (возможности выставить большое значение диафрагмы) все равно не избавит от необходимости выставлять достаточно длинную выдержку, которая при съемке с рук даст шевеленку или смаз.
Для того, чтобы получить качественное изображение, в таких случаях, необходимо добиться стабилизации фотоаппарата. Сделать это можно, либо стабилизировав камеру внешними приспособлениями, либо воспользоваться встроенной стабилизацией.
В этой статье мы рассмотрим решения по стабилизации изображения, которые разрабатывают и внедряют в свои продукты производители фотоаппаратов и объективов. Внешние средства, такие как штатив, монопод и прочее, мы рассмотрим во второй части статьи.
На сегодняшний день существует несколько принципиально отличающихся решений:
- оптическая стабилизация;
- матричная стабилизация;
- электронная (цифровая) стабилизация.
Оптическая и матричная стабилизация предполагает, что в фотоаппарат (или объектив) встроены специальные датчики — гироскопы или акселерометры. Эти датчики постоянно определяют углы поворота и скорости перемещения фотоаппарата (или объектива) в пространстве и выдают команды электрическим приводам, которые отклоняют стабилизирующий элемент объектива или матрицу фотоаппарата.
При электронной (цифровой) стабилизации ничего никуда механически не сдвигается, изображение углы и скорости перемещения фотоаппарата пересчитываются процессором, который устраняет сдвиг, фактически переделывая полученное изображение.
Обычно, производители внедряют в свои продукты какой-то один тип технологий. Либо, делают фотоаппараты со встроенной стабилизацией, но объективы без таковой (как Olympus или Pentax). Или наоборот – встраивают стабилизатор в объективы и производят сами камеры без нее (Canon, Nikon, Panasonic, Samsung). Но, как обычно, есть и исключения).
ОПТИЧЕСКАЯ СТАБИЛИЗАЦИЯ ИЗОБРАЖЕНИЯ
Оптическая стабилизация – это технология, реализованная в объективе, а не фотоаппарате. Гранды фотостроения — Nikon и Canon практически синхронно начали исследования в области оптической стабилизации. И в 1994 году Nikon представил первую пленочную фотокамеру Nikon Zoom 700VR с, встроенной в объектив, оптической стабилизацией изображения, а в 1995 году Canon представили EF 75-300mm F4-5.6 IS USM, первый в мире объектив, оснащенный оптическим стабилизатором изображения.
Принцип работы заключался в том, что в конструкцию объектива добавляется дополнительный оптический стабилизирующий элемент, который отклоняется электрическим приводом системы стабилизации так, чтобы проекция изображения на плёнке (или матрице) полностью компенсировала колебания фотоаппарата во время съемки.
Мы помним, что фотография – это рисование светом, который проходит через объектив, преломляется линзами объектива и проецируется на светочувствительный элемент (матрица или пленка). Если правильные параметры съемки не соблюдены и выдержка длиннее чем нужно, а вы фотографируете с рук, то проекция изображения попадающего на матрицу сдвигается, вследствие колебания камеры, и изображение получается смазанным.
Так вот, благодаря стабилизирующему элементу, проекция всегда остаётся неподвижной относительно матрицы, что и обеспечивает картинке необходимую чёткость. Но, у этой технологии есть и недостаток — дополнительный оптический элемент немного снижает светосилу объектива. Второй очевидный недостаток, это то, что при прочих равных условиях, объективы со встроенной стабилизацией изображения — дороже.
Ниже приведены обозначения, применяемые производителями для идентификации встроенной в объективы стабилизации изображения:
- Nikon Vibration Reduction — VR
- Canon Image Stabilization — IS
- Panasonic Lumix Optical Image Stabilizer O.I.S. (Есть разновидности – POWER O.I.S. и MEGA O.I.S.)
- Olympus Image Stabilization — IS
- Sony Optical Steady Shot — OSS
- Sigma Optical Stabilization — OS
- Samsung Optical Image Stabilizer — OIS
- Fujifilm Optical Image Stabilizer — OIS
Как вы обратили внимание, у некоторых производителей могут попадаться разные типы оптических стабилизаторов, как например POWER O.I.S. и MEGA O.I.S. у Panasonic. Итак, давайте разбираться:
Изначально, первые оптические стабилизаторы были двухосными – то есть, осуществляли сдвиг проекции изображения по двум осям плоскости — горизонтальной и вертикальной и могли компенсировать колебания при использовании выдержки, длиннее возможной на 1-2 ступени.
Рассмотрим пример: при использовании объектива с фокусным расстоянием 100 мм, минимальная выдержка, которую возможно использовать для получения достаточно резкого изображения, должна быть короче 1/100 секунды (это для полного сенсора, а если в камере установлен кроп-сенсор, то нужно учитывать — эквивалентное фокусное расстояние). Но, если в объективе используется стабилизирующий элемент, выдержку можно сделать короче без ущерба для качества изображения (1 ступень – это сокращение выдержки в 2 раза, 2 ступени – в 2*2=4 ! раза). То есть, можно поставить выдержку, вплоть до 1/25 секунды.
Но прогресс не стоит на месте, и сегодня производители предлагают в своих продуктах, уже гораздо более продвинутые стабилизирующие элементы, способные компенсировать выдержку в 3-4 и даже 5 ступеней (то есть сократить выдержку в 8-16-32 раз, соответственно).
Кроме того, появились технологии с 4-х осевыми стабилизационными элементами, позволяющие компенсировать не только дрожание рук и горизонтальные / вертикальные сдвиги, а и осевые перемещения объектива и сильную тряску при ходьбе. Это существенно промогает при макросъемке и съемке видео на цифровой фотоаппарат с рук.
Как пример — MEGA O.I.S. у Panasonic, это двухосевая стабилизация с компенсацией вибраций до 2-3 ступеней, а POWER O.I.S. – это уже четырехосевая система, которая помимо компенсации до 3-4 ступеней, еще и способна гасить вибрации съемки видео с рук при ходьбе. Подобные технологии есть и у других производителей – например Hybrid IS и Dinamic IS у Canon.
ВНУТРИКАМЕРНАЯ ИЛИ МАТРИЧНАЯ СТАБИЛИЗАЦИЯ ИЗОБРАЖЕНИЯ
Матричная стабилизация – это технология, реализованная в фотоаппарате, а не объективе. Она была предложена компанией Konica Minolta и впервые применена в 2003 году в фотокамере Dimage A1 (сама технология называлась — Anti-Shake).
При таком решении, колебания камеры компенсирует не оптический элемент внутри объектива, а сама матрица, установленная на подвижной стабилизирующей платформе. Принцип стабилизации здесь иной — сама матрица «подстраивается» под проекцию изображения, а не проекция изменяется по пути к матрице. Из плюсов такого решения — в отличие от оптической стабилизации, матричная не вносит искажений в картинку и не влияет на светосилу объектива. Кроме этого, наиочевиднейший плюс в том, что можно использовать любые, даже самые дешевые объективы и получать «стабилизированное» изображение.
Но есть и минусы. Считается, что стабилизация сдвигом матрицы менее эффективна, нежели оптическая стабилизация. С увеличением фокусного расстояния объектива эффективность ее снижается: на длинных фокусах матрице приходится совершать слишком быстрые перемещения со слишком большой амплитудой, и она просто перестаёт успевать за «ускользающей» проекцией. Кроме того, для высокой точности работы, система должна знать точное значение фокусного расстояния объектива, что ограничивает применение старых зум-объективов, а также — расстояние фокусировки при малой дистанции. А самое неприятное — матричная стабилизация может не корректно работать при макросъёмке. Конечно же, прогресс и здесь не стоит на месте, и производители значительно совершенствуют свои разработки. Новейшие камеры предлагают уже 5-осевые системы стабилизации (Konica Minolta Anti-Shake была 2-осевой) и возможность компенсации выдержки до 5 ступеней.
Ниже приведены обозначения, применяемые производителями для идентификации встроенной в камеры стабилизации изображения:
Konica Minolta Anti-Shake — AS (уже не выпускается, здесь упомянута как «дань истории»)
Pentax Shake Reduction — SR
Olympus In Body Image Stabilizer — IBIS
Sony SteadyShot — SS, (Есть разновидности – Super SteadyShot — SSS и SteadyShot INSIDE — SSI )
ЭЛЕКТРОННАЯ (ЦИФРОВАЯ) СТАБИЛИЗАЦИЯ ИЗОБРАЖЕНИЯ
При этом виде стабилизации, примерно 40 % пикселей на матрице отводится на стабилизацию изображения и не участвует в формировании картинки. При дрожании камеры, картинка «плавает» по матрице, а процессор фиксирует эти колебания и вносит коррекцию, используя резервные пиксели для компенсации дрожания. Эта система стабилизации широко применяется в недорогих цифровых видеокамерах, где матрицы маленького размера. Она имеет значительно более низкое качество, чем прочие типы стабилизации, зато принципиально дешевле, так как не содержит дополнительных механических элементов.
Обратите внимание, что производители могут давать возможность выбора использования определенных режимов работы систем стабилизации, например:
- однокадровый режим, при котором система стабилизации активируется только на время экспозиции для одного кадра (Если нет выбора режимов стабилизации, а только переключатель включения/выключения, значит, скорее всего, это единственный возможный режим её работы. Хотя — возможно, что определение режима работы стабилизации выставляется в меню фотокамеры)
- непрерывный режим, при котором система стабилизации работает постоянно, что облегчает фокусировку в сложных условиях. Однако эффективность работы системы стабилизации при этом может оказаться несколько ниже, поскольку в момент экспозиции корректирующий элемент может оказаться уже смещённым, что снижает его диапазон корректировки. Да, и в непрерывном режиме система потребляет больше электроэнергии, что приводит к более быстрому разряду аккумулятора.
- режим панорамирования, при котором система стабилизации компенсирует только вертикальные колебания.
Еще раз заострим внимание, что режимы работы системы стабилизации могут регулироваться как на корпусе объектива, так и в меню камеры.
У всех производителей есть свои специфические наработки и технологии, так что стоит ознакомиться с руководством пользователя конкретного объектива, чтобы в полной мере использовать все его возможности.
Также, важно учитывать, что практически для всех объективов и камер, оснащенных встроенной стабилизацией изображения, производители рекомендуют отключать ее, при установке камеры на штатив.
Кроме того, некоторые производители внедряют в свою технику как оптическую так и матричную стабилизацию:
- Sony, поглотив в свое время компанию Minolta, получили “в наследство” технологию двуосного сдвига матрицы — Konica Minolta AS (Anti-Shake), доработали ее и сейчас внедряют в некоторые свои фотоаппараты. Причем, новая полнокадровая беззеркальная камера Sony α7 II уже снабжена 5-осевым стабилизатором.
- Компания Panasonic встраивает стабилизацию изображения в объективы, но у них есть уже четыре (пока что – четыре) модели фотоаппаратов со встроенной матричной системой стабилизации – это DMC-GX7, DMC-GX8, DMC-GX80, DMC-G80. Какого-то специального названия технология не имеет, просто в спецификациях указано, что в камере используется система стабилизации изображения (Image Sensor Shift Type).
- Компания Olympus тоже начала производить объективы со встроенной оптической стабилизацией изображения, которая дополняет встроенную матричную. Таких объективов пока всего два — M.ZUIKO DIGITAL 300mm F4.0 IS PRO и M.ZUIKO DIGITAL ED 12-100mm F4 IS Pro.
Подводя итого, хочется сказать, что:
- система встроенной стабилизации изображения — это действительно серьезный помощник, дающий возможность получить качественные кадры в сложных условиях съемки
- даже светосильная оптика поможет уменьшить выдержку, но не поможет при съемке видео с рук, где важна компенсация серьезных колебаний
- стабилизация вместе со светосильной оптикой — это наилучшее сочетание, к которому «стоит стремиться», и которое дает наилучший результат
- если уж вы покупаете не самую светосильную оптику, то хотя бы не экономьте на стабилизации изображения — это нередко очень выручает
- также не забывайте, что длиннофокусные объективы, требуют достаточно коротких выдержек (помним про правило) и в них особенно важна хорошая стабилизация изображения.
photodzen.com
Оптический стабилизатор. Нюансы использования IS и VR
© 2014 Vasili-photo.com
Оптический стабилизатор изображения – это устройство, призванное механически компенсировать возникающую при съёмке с рук вибрацию камеры и, тем самым, уменьшить эффект шевелёнки.
Польза от оптической стабилизации очевидна: стабилизатор позволяет снимать с рук в условиях недостаточной освещённости, используя сравнительно невысокие скорости затвора, и, несмотря на это, получать резкие снимки. Иными словами, в определённых пограничных ситуациях стабилизатор вполне способен заменить фотографу штатив.
Однако у оптической стабилизации есть и своя тёмная сторона, о существовании которой производители фотооборудования, как правило, предпочитают умалчивать. Но факт остаётся фактом: при неумелом использовании оптический стабилизатор может, в зависимости от обстоятельств, как улучшить, так и ухудшить техническое качество ваших снимков. И если о преимуществах оптической стабилизации изображения всем хорошо известно благодаря рекламе, то о её не столь очевидных недостатках фотографам приходится узнавать на собственном опыте, что нередко приводит к разочарованию в собственных фотографических возможностях.
Чтобы уберечь вас как от разочарования, так и от опасного оптимизма при использовании стабилизатора, я постараюсь рассказать о принципах его работы, о том, когда стабилизатор действительно бывает полезен, а, главное, о том, когда от его использования лучше отказаться.
Всё что будет сказано ниже, касается в первую очередь системы оптической стабилизации Nikon VR – просто потому, что сам я снимаю в основном на Nikon и мой опыт работы с прочими системами недостаточен для того, чтобы выносить сколько-нибудь авторитетные суждения. Тем не менее, я возьму на себя смелость утверждать, что практически всё, что относится к Nikon VR применимо и к Canon IS. Как Nikon, так и Canon используют весьма схожие по своей конструкции модули оптической стабилизации, встраиваемые в объектив, и, по большому счёту, системы Nikon VR (Vibration Reduction) и Canon IS (Image Stabilizer) функционируют примерно одинаково, отличаясь разве что названием. Недалеко ушли и другие аналогичные системы: Sony OSS (Optical Steady Shot), Fujifilm OIS (Optical Image Stabilizer), Panasonic OIS (Optical Image Stabilizer), Tokina VCM (Vibration Compensation Module), Sigma OS (Optical Stabilization), Tamron VC (Vibration Compensation).
Стабилизатор, встроенный не в объектив, а в камеру, как это реализовано в системах Sony SSS (Super Steady Shot), Olympus IS (Image Stabilizer) и Pentax SR (Shake Reduction), работает немного по-другому, но большинство моих замечаний остаётся в силе и для внутрикамерной стабилизации.
Прежде чем перейти непосредственно к практическим рекомендациям, позволю себе хотя бы вкратце обрисовать внутреннее устройство и принцип работы оптического стабилизатора, чтобы вы лучше представляли себе, на что он способен и почему он ведёт себя так, а не иначе.
Как работает стабилизатор?
Модуль оптической стабилизации в системах Nikon VR и Canon IS встроен в объектив фотоаппарата и состоит из следующих компонентов: подвижного оптического элемента (линзы), являющегося частью оптической схемы объектива; датчиков угловой скорости (ДУС), измеряющих колебания камеры; электромагнитов, перемещающих оптический элемент в соответствии с показаниями ДУС и микросхемы, обеспечивающей слаженное взаимодействие всех компонентов системы.
В системах VR и IS имеются два датчика угловой скорости с пьезоэлектрическими гироскопами. Один из них служит для определения отклонений камеры относительно поперечной оси, а другой – следит за отклонениями относительно вертикальной оси. Если использовать авиационные термины, то первый датчик отвечает за тангаж фотоаппарата, а второй – за рыскание.
Когда стабилизатор активен, информация о направлении, скорости и амплитуде движений камеры считывается с частотой 1000 Гц, т.е. 1000 раз в секунду. Эти данные обрабатываются микропроцессором, который в свою очередь понуждает электромагниты перемещать оптический элемент стабилизатора, изменяя тем самым траекторию движения лучей света внутри объектива. В результате проекция изображения остаётся более-менее неподвижной относительно матрицы фотоаппарата, и фотограф получает возможность сделать чёткий снимок, несмотря на вибрацию.
Попрошу отметить, что описанная выше двухдатчиковая система не способна бороться с колебаниями камеры относительно продольной оси, т.е. креном, который в частности возникает при слишком резком нажатии на кнопку спуска затвора.
Также классические VR и IS не учитывают сдвиг камеры по вертикали или по горизонтали параллельно фокальной плоскости, поскольку датчики угловой скорости способны регистрировать только повороты. Это не является большой проблемой, поскольку вклад параллельных колебаний в смазывание изображения ничтожен, за исключением съёмки с очень малых расстояний. В связи с этим, некоторые объективы Canon оснащаются системой Hybrid IS, разработанной специально для макросъёмки и реагирующей в том числе и на параллельный сдвиг камеры.
Что до систем оптической стабилизации, встроенных в камеру, то работают они в целом по схожему принципу, с тем лишь фундаментальным различием, что в роли подвижного элемента выступает непосредственно матрица фотоаппарата, а не линза объектива. Современные системы внутрикамерной стабилизации способны учитывать крен, тангаж, рысканье, а также вертикальный и горизонтальный сдвиг камеры.
Главным преимуществом систем с подвижной матрицей является то, что стабилизатор работает с любой оптикой. Это избавляет вас от необходимости переплачивать всякий раз при покупке нового объектива со стабилизатором, как это происходит при использовании техники Nikon или Canon. Тем более что у Nikon и Canon поголовно стабилизированы разве что телеобъективы последних поколений, а значительная часть нормальных и широкоугольных объективов в принципе не имеют версий со стабилизатором.
Существенным же недостатком внутрикамерной стабилизации является её сравнительно низкая эффективность при работе с длиннофокусными объективами. А ведь именно при использовании телеобъективов шевелёнка наиболее заметна и к стабилизатору предъявляются повышенные требования. Чем больше фокусное расстояние объектива, тем с большей скоростью и амплитудой должен перемещаться фотосенсор, чтобы компенсировать вибрацию, а степень его подвижности внутри камеры сильно ограничена. В то же время стабилизатору, встроенному в объектив, достаточно лишь слегка сдвинуть свой оптический элемент, чтобы проекция изображения на матрице переместилась на достаточное для устранения вибрации расстояние. Вследствие этого такие системы могут работать быстрее и эффективнее.
Главное правило
Важнейшее правило эксплуатации VR и IS таково: стабилизатор должен быть выключен всегда, за исключением тех случаев, когда его использование оправдано. Словом, положение выключателя по умолчанию должно быть «OFF».
Это может показаться странным, учитывая тот факт, что и реклама, и официальные инструкции советуют держать стабилизатор включённым постоянно и выключать его разве что при съёмке со штатива. Производители фототехники настаивают на том, что стабилизатор не может навредить вашим снимкам, в то время как опытные фотографы предпочитают придерживаться совершенно противоположного мнения: да, стабилизатор полезен, а иногда и вовсе незаменим, но при неграмотном использовании он, скорее, способен привести к деградации изображения. Оптическая стабилизация – это прежде всего решение проблемы, а если проблема отсутствует, то используемый не по назначению стабилизатор может сам стать проблемой.
Употребив слово «деградация», я, быть может, немного погорячился. На самом деле даже неправильно используемый стабилизатор редко доводит изображение до полной непригодности. Просто на современных фотокамерах с высоким разрешением он не позволяет получить то, что называется «звенящей резкостью». Да, снимки выходят более-менее резкими, но это немного не та резкость, которой можно добиться, снимая в безветренную погоду со штатива с поднятым зеркалом и при выключенном стабилизаторе.
Таким образом, если вы не страдаете перфекционизмом или уменьшаете все свои снимки в пятьдесят раз для публикации в социальных сетях, то, разумеется, кристально чёткая многомегапиксельная картинка вам ни к чему, и вы вполне можете постоянно держать стабилизатор включённым, как это и рекомендуют делать производители – снимки будут достаточно резкими. Если же вы ожидаете от своего оборудования максимально возможного технического качества изображения, то вам следует избрать более консервативный подход.
Именно тот факт, что не вовремя включённый стабилизатор ухудшает изображение очень незначительно (но всё-таки ухудшает), заставляет меня придерживаться описанной выше стратегии: держать стабилизатор в основном выключенным и включать его тогда, когда это действительно необходимо.
Поймите меня правильно: резкость падает как в том случае, когда стабилизатор включён, а должен быть выключен, так и в том случае, когда стабилизатор выключен, а должен быть включён. Причём во втором случае резкость может пострадать даже сильнее, чем в первом. Но научиться распознавать ситуации, когда стабилизатор следует включить, намного проще, чем ситуации, когда его стоит выключить. И если я забуду включить VR, то быстро замечу последствия этого и включу его, а если я забуду выключить VR, то заметить свою оплошность смогу только вернувшись домой и рассматривая снимки на большом экране, т.е. тогда, когда будет уже поздно что-либо исправлять.
Когда стабилизатор бесполезен
Оптический стабилизатор изображения абсолютно бесполезен в двух ситуациях: когда отсутствие резкости не связано с движением камеры и когда съёмка производится при объективно длинных выдержках.
Относительно первого вопроса следует понимать, что оптический стабилизатор компенсирует только и исключительно вибрацию фотоаппарата. Он ничего не может поделать с движением объекта съёмки. Если вы хотите заморозить движение, вам в любом случае понадобится достаточно короткая выдержка, вне зависимости от того, пользуетесь вы стабилизатором или нет. VR и IS позволяют безнаказанно увеличивать выдержку только при съёмке статичных сцен. Если объект движется и движется быстро, стабилизатор вам не поможет.
Точно также стабилизатор не в состоянии исправить промахи фокусировки, недостаток ГРИП и прочие технические ошибки, крадущие резкость, – он всего лишь устраняет вибрацию.
Что же касается длинных выдержек, то от штатива будет больше проку, чем от VR или IS. При помощи широкоугольного объектива со стабилизатором мне удавалось получить более-менее резкие кадры, снимая с рук при выдержке 1/8 с, но это уже игра в орлянку. При выдержках же в районе 1 с и длиннее никакой стабилизатор не обеспечит вам приемлемой резкости. Т.е. эффект-то от стабилизации, конечно, будет: вместо отвратительного качества вы получите просто плохое качество. Но к этому ли вы стремитесь? Уж лучше взять штатив и наслаждаться бескомпромиссной резкостью при сколь угодно длинных выдержках.
Когда стабилизация наиболее эффективна
VR и IS наиболее эффективны в диапазоне выдержек 1/30-1/60 с. Это не означает, что все ваши снимки будут резкими – просто процент резких снимков при прочих равных условиях будет наибольшим именно в этом диапазоне. Опять-таки, это не означает, что при иных значениях выдержки стабилизация не будет работать – будет, однако эффективность её будет несколько ниже. В общем-то, вы вправе ожидать от стабилизатора положительного влияния на резкость при выдержках от 1/4 до 1/500 с. Просто на длинных выдержках (1/4-1/15 с) толку от стабилизатора будет мало и резкость снимков в любом случае будет сильно хромать, а на коротких выдержках (1/125-1/500 с) шевелёнка и без стабилизации не очень-то заметна. После же 1/500 с (а иногда и раньше) правила игры несколько меняются, о чём будет сказано ниже.
Стабилизатор не гарантирует резкости, а, скорее, повышает вероятность получения резкого кадра. Иной раз и со стабилизатором снимок оказывается смазанным, а иногда вам везёт, и снимок выходит резким безо всякой стабилизации и даже при сравнительно длинной выдержке. Отличие в том, что со стабилизатором процент брака будет существенно меньше, и наибольшая разница здесь заметна именно при умеренных значениях выдержки, т.е. 1/30-1/60 с. Обещанный маркетолагами выигрыш в 4 ступени экспозиции (EV) относится аккурат к этому диапазону. Впрочем, по моим наблюдениям, выигрыш в 2-3 ступени – это тот реалистичный максимум, который можно действительно ожидать от стабилизатора, работающего в оптимальных условиях.
Необходимость в стабилизации резко возрастает с увеличением фокусного расстояния объектива. Оптический стабилизатор в телеобъективе – это не просто модная опция, а действительно нужное и полезное устройство. Чем больше фокусное расстояние, тем сложнее получить резкий снимок без штатива и тем ощутимее вклад оптической стабилизации даже на сравнительно коротких и безопасных выдержках. Однако и здесь не всё так просто, как может показаться на первый взгляд.
Короткие выдержки
При скоростях затвора свыше 1/500 с стабилизатор желательно выключать. Пользы от него не будет. Дело в том, что если Nikon не врёт и частота дискретизации стабилизатора действительно составляет 1000 Гц, то частота Найквиста (половина частоты дискретизации) будет равна всего 500 Гц. Иными словами микропроцессор стабилизатора способен без ошибок обрабатывать информацию о колебаниях с частотой, не превышающей 500 Гц или 1/500 с. Даже при вибрации с частотой 500 Гц система будет работать на пределе своих возможностей. Более высокочастотные вибрации могут быть не только не подавлены, но даже усугублены вследствие погрешностей дискретизации. При вибрации же с частотой свыше 1000 Гц ждать от системы какого-то положительного эффекта просто наивно.
Таким образом, при высоких скоростях затвора оптический стабилизатор бесполезен по той причине, что от низкочастотных колебаний мы застрахованы короткой выдержкой, а с высокочастотными колебаниями он всё равно не справляется.
При этом датчики угловой скорости продолжают работать, а подвижный оптический элемент продолжает судорожно перемещаться. Т.е. сам стабилизатор является источником высокочастотной вибрации – вы можете слышать, как он жужжит. При нормальных выдержках мы готовы с этим мириться, поскольку озабочены борьбой с более интенсивными низкочастотными колебаниями, но когда выдержки становятся настолько короткими, что с лёгкостью отсекают грубую вибрацию, жертвовать потенциальной попиксельной резкостью только потому, что нам лень выключить стабилизатор, – неразумно.
Съёмка со штатива
Если вы используете штатив, стабилизатор опять-таки лучше выключить. В этом вопросе даже производители фотооборудования со мной солидарны. По сравнению со стабилизатором штатив обеспечивает более доброкачественный, а, главное, более предсказуемый результат.
Когда камера установлена на штатив, стабилизатор, забытый во включённом состоянии, вполне может оказаться основным источником вибрации. Пытаясь поймать несуществующие колебания, стабилизатор сам генерирует вибрацию. Эта вибрация, усиленная резонансом в ногах штатива, воспринимается стабилизатором, как что-то внешнее, и провоцирует его на ещё более активную борьбу с колебаниями, причиной которых он сам же и является. Чем-то это напоминает гитарный feedback.
Мой совет отключать стабилизатор при съёмке со штатива касается и более продвинутых систем оптической стабилизации (вроде Nikon VR II), которые якобы умеют по отсутствию дрожания автоматически определять, что камера находится на штативе и самостоятельно отключаться. На мой взгляд, способность этих систем отличать истинные колебания от фантомных недостаточно надёжна, чтобы на неё можно было смело положиться. Принудительное ручное отключение стабилизатора страхует меня от любых капризов и ошибок излишне умной электроники.
Несмотря на всё вышесказанное, существуют обстоятельства, оправдывающие использование стабилизатора даже на штативе. Речь идёт о тех случаях, когда фотоаппарат, даже и установленный на штатив, всё равно остаётся нестабильным, т.е. во-первых, когда сама поверхность, на которой стоит штатив, подвержена вибрации, во-вторых, когда вы снимаете, придерживая камеру руками и не фиксируя жёстко штативную головку, и в-третьих, при использовании монопода. Впрочем, и в этих случаях использование оптической стабилизации не обязательно, хотя иногда и может оказать положительное влияние на резкость.
Съёмка из неустойчивого положения
В некоторых ситуациях дрожание камеры может быть особенно интенсивным. Всякий раз, когда вы фотографируете на ходу, или на весу, или держа камеру на вытянутых руках, а то и в одной руке, вы тем самым любезно приглашаете шевелёнку в кадр. В целом, я советую избегать подобных ситуаций, но когда они неизбежны, оптическая стабилизация будет весьма кстати. Например, некоторые нестандартные ракурсы просто недостижимы, если держать камеру строго по уставу. А уж от альпиниста, который висит над обрывом и хочет мимоходом сфотографировать высокогорный пейзаж, сложно требовать, чтобы он занял сколько-нибудь устойчивое положение или воспользовался штативом. Словом, если обстоятельства требуют, смело включайте стабилизатор, – по крайней мере, он убережёт вас от грубой нерезкости и позволит вам получить интересный снимок.
Отдельного упоминания заслуживает фотосъёмка с транспортных средств, находящихся в движении: автомобилей, лодок, вертолётов, фуникулёров и т.п. Здесь к тремору рук фотографа добавляется довольно интенсивная внешняя вибрация и потому использование стабилизатора весьма и весьма желательно. Звенящей резкости в таких условиях ждать всё равно не приходится, так пусть стабилизатор хоть немного облегчит вам жизнь.
Никогда не нужно опираться на борт моторной лодки или прижимать камеру к стеклу иллюминатора. Старайтесь сесть или стать так, чтобы по возможности вообще не прислоняться ни к каким конструкциям проводящим вибрацию. Держите фотоаппарат в руках и позвольте самому вашему телу гасить большую часть высокочастотных колебаний.
На некоторых объективах Nikon имеется переключатель режимов работы VR: Normal и Active. Так вот, режим Active предназначен именно для таких экстремальных ситуаций, когда дрожит не только камера, но и всё вокруг ходит ходуном. При съёмке же из устойчивого положения следует выбрать режим Normal. Он рассчитан на меньшую амплитуду колебаний и в стандартных условиях работает более аккуратно.
Съёмка с проводкой
При съёмке с проводкой стабилизатор уместно оставить включённым.
На объективах Canon, оснащенных переключателем режимов работы IS, следует выбрать режим 2, который предназначен как раз для панорамирования. В этом режиме стабилизатор компенсирует только те колебания, которые перпендикулярны направлению проводки.
У Nikon VR специальный режим для панорамирования отсутствует, поскольку панорамирование распознаётся автоматически. Система сама замечает, когда вы плавно ведёте камеру в определённом направлении, и не пытается это движение компенсировать. Перпендикулярные же колебания отрабатываются обычным порядком.
Ключевое значение здесь имеют именно плавность и непрерывность панорамирования. Остановка или замедление проводки в момент спуска затвора мало того, что сами по себе являются довольно грубыми ошибками, так ещё и сбивают с толку систему стабилизации, заставляя её совершать лишние действия.
Стабилизатор и фокусировка задней кнопкой
Если для фокусировки вы используете кнопку AF-ON или AE-L/AF-L, то вам следует помнить, что кнопка эта активирует только автофокус, но не стабилизатор. Активацией стабилизатора по-прежнему заведует кнопка спуска затвора, причём нажимать её желательно в два приёма. Сфокусировавшись с помощью кнопки AF-ON, нажмите кнопку спуска до первого упора, и только когда элементы стабилизатора придут в движение (обычно на это уходят доли секунды), нажимайте спуск до конца. Можно не ждать пробуждения стабилизатора и сразу давить на спуск до второго упора – стабилизатор всё равно включится и сделает всё от него зависящее, чтобы устранить шевелёнку. Просто если вы всё-таки дадите ему полсекунды на раскрутку гироскопов и анализ характера вибрации, он сможет действовать эффективнее. Кроме того, когда вы нажимаете на кнопку спуска затвора в два приёма, камера испытывает значительно меньшее сотрясение, чем если бы вы одним махом опустили свой палец на спуск. Не забывайте, что возникающий при таком подходе крен ни VR, ни IS компенсировать не умеют.
Стабилизатор и вспышка
Если вы хотя бы время от времени пользуетесь встроенной вспышкой фотоаппарата (а встроенной вспышки не бывает только у профессиональных камер), то, возможно, вас поджидает ещё один неприятный сюрприз: пока вспышка перезаряжается, стабилизатор не работает. В силу того, что и вспышка, и стабилизатор являются довольно активными потребителями электроэнергии, камера бывает вынуждена сдерживать их конкуренцию за доступ к аккумулятору, и делает она это отключая питание стабилизатора, пока конденсатор вспышки полностью не зарядится. Камера справедливо предполагает, что раз уж вы включили вспышку, то, скорее всего, вы заинтересованы в её максимально быстрой перезарядке, даже ценой отказа от стабилизации. Если вспышка работает на максимальной мощности, то для полной перезарядки ей может потребоваться до нескольких секунд. Единственным радикальным решением этой проблемы является установка в горячий башмак дополнительной вспышки с независимым питанием.
Влияние на боке
Одной из малоприятных особенностей систем оптической стабилизации, встроенных в объектив (вроде Canon IS и Nikon VR), является их негативное влияние на области изображения, лежащие вне фокуса, т.е. боке. Стабилизатор призван сохранить резкость объектов, находящихся в фокусе, и, будучи задействован, перемещает свой оптический элемент в соответствии с этой задачей. При этом изменяется оптический путь всех лучей, а не только тех, которые сходятся в фокальной плоскости. Это чревато труднопредсказуемым изменением степени исправления сферических аберраций объектива, что в свою очередь может приводить к изменению характера боке. Обычно при включенном стабилизаторе кружки нерезкости приобретают чуть более выраженные границы, и боке делается немного жестковатым на вид. Впрочем, этот эффект настолько незначителен и малозаметен, что лично я не считаю нужным придавать ему большое значение.
Очевидно, что стабилизатор, встроенный в камеру, не оказывает на боке никакого влияния, поскольку лучи света проходят весь свой путь через объектив, без дополнительных отклонений от пути, заданного конструкцией объектива.
Не слишком ли всё это сложно?
Пожалуй, сложновато. Но что делать? Раз уж вы взялись читать эту статью и осилили её почти до конца, значит, вы весьма серьёзно относитесь к качеству своих фотографий, и капризным стабилизатором вас не испугаешь.
Признаться, я и сам не всегда соблюдаю собственные рекомендации, и, порой, оставляю стабилизатор включённым даже при коротких выдержках, когда без него спокойно можно было бы обойтись. Особенно либеральным я становлюсь во время походов и длительных прогулок по пересечённой местности, когда от усталости тремор рук заметно усиливается, а штатив доставать некогда или лень. Но в наиболее ответственные моменты, когда качество снимков приобретает для меня принципиальное значение, я стараюсь быть предельно консервативным и не включать стабилизатор без веской на то причины.
Это подводит нас к ещё одному интересному вопросу: стоит ли вообще покупать объектив со стабилизатором, если в продаже имеется аналогичная модель без оного? Очень часто условно устаревшие объективы без VR и IS могут иметь отличную оптику и стоить при этом ощутимо дешевле более современных стабилизированных моделей. Что касается бюджетных зумов, то здесь премия за стабилизатор обычно невелика, и потому покупка последних моделей экономически почти всегда оправдана. В конце концов, при прочих равных условиях объектив со стабилизатором лучше хотя бы тем, что он универсальнее. Глядишь, и стабилизация пригодится. Но когда речь заходит о покупке дорогого профессионального стекла, разница в цене между стабилизированной и нестабилизированной версиями одного и того же объектива может быть весьма существенной. Например, популярный среди фоторепортёров Canon EF 70-200mm f/2.8L IS USM стоит 2400 $, в то время как мало чем ему уступающий Canon EF 70-200mm f/2.8L USM – всего 1400 $. И такая разница – не предел.
Проанализируйте свои потребности. Если вы занимаетесь фотосъёмкой спортивных соревнований, и, стало быть, работаете в основном на коротких выдержках, то стабилизатор вас не сильно выручит. Если в основном вы фотографируете пейзажи и архитектуру, да ещё и со штатива, то стабилизатор вам и подавно ни к чему. Равно как и при работе со студийными вспышками. И только если вы регулярно снимаете с рук в условиях недостаточной освещённости, а объекты съёмки не слишком проворны, стабилизатор будет для вас хорошим подспорьем.
Спасибо за внимание!
Василий А.
Post scriptum
Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.
Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.
Желаю удачи!
Дата публикации: 20.12.2014 |
Вернуться к разделу «Специальные приёмы»
Перейти к полному списку статей
vasili-photo.com
на матрице, в объективе, электронная / Съёмка для начинающих / Уроки фотографии
У каждого фотографа иногда получаются нерезкие снимки… В чём причина? Конечно, смазанное изображение почти всегда связано не с техническим несовершенством техники, а с недочётами при настройке важнейших параметров съёмки — выдержки, диафрагмы, а также с ошибками фокусировки. Во многих ситуациях избавиться от смаза на фото помогает стабилизация изображения. Это и отличная подстраховка на случай сложных условий съёмки, и новая творческая возможность в современной фотографии.
Какие виды стабилизации изображения существуют сегодня? Как ими пользоваться? Обсудим в этой статье!

Потолок в Испанской синагоге, Прага. Чтобы снимать при слабом освещении без штатива и при этом не завышать ISO, приходится делать кадры на сравнительно длинной выдержке — около 1/15 с. В таких условиях стабилизация изображения окажется как нельзя кстати.
NIKON D850 / 18.0-35.0 mm f/3.5-4.5 УСТАНОВКИ: ISO 1000, F4.5, 1/640 с, 18.0 мм экв.Зачем нужна стабилизация изображения?
Из-за чего изображение смазывается? Если дело не касается ошибок фокусировки, то причина одна — слишком длинная выдержка. Когда мы держим камеру, она всегда немного дрожит, такова физиология человека. Если выдержка достаточно короткая, это дрожание никак на снимке не сказывается; если длинная — получим «шевелёнку», смаз на изображении.

Смаз изображения из-за дрожания камеры в руках
Кроме того, при съёмке движущегося объекта смаз может произойти из-за того, что выдержка не позволила «заморозить» движение полностью. Чем быстрее движется наш герой, тем короче нужна выдержка. Если идущего человека получится снять и на 1/250 с, то для играющего котёнка такая выдержка может оказаться длинной.

Здесь выдержка оказалась слишком длинной, и объект съёмки смазался.
С увеличением разрешения современных фотоаппаратов смаз на изображениях всё более различим. В этом же кроется ответ на популярное «раньше же как-то снимали на фотоплёнку без стабилизатора и горя не знали». Просто сейчас качество и снимков, и дисплеев заметно выросло, и виден любой технический огрех. Нерезкость из-за смаза не позволит раскрыть преимущества камер с большим разрешением: например, Nikon D810 с 36 Мп, Nikon D850 и Nikon Z7 с 45 Мп. Ведь чем больше детализация изображения, тем заметнее смаз. Если раньше при съёмке на «полтинник» я смело ставил 1/60 с и был уверен в резкости получаемого изображения, то теперь на фотографиях высокого разрешения при съёмке на такой выдержке заметен смаз. Смаза можно избежать тремя способами.
Снимать на более короткой выдержке — самый действенный способ застраховать себя от смаза. При съёмке динамики нужно отталкиваться от скорости движения объекта, и тут поможет тестовая съёмка. Но выдержка всё равно не может быть длиннее максимальной выдержки для съёмки неподвижных объектов с рук. Как определить безопасную выдержку для съёмки неподвижных объектов с рук? До какого предела можно удлинять выдержку, не боясь последствий? Существует формула, выведенная фотографами опытным путём:
максимальная выдержка при съёмке с рук должна бытьне более 1/(фокусное расстояние × 2)
Формула в таком виде будет хорошо работать для камер с разрешением около 24 Мп. Для «кропов» лучше брать не физическое, а эквивалентное фокусное расстояние объектива.
А вот для камер с большим разрешением (36, 45 Мп и выше) правильнее использовать в знаменателе дроби не двойку, а тройку, дополнительно сокращая выдержку. Получается, что при съёмке на объектив с фокусным 50 мм я должен ставить выдержку 1/150 с (50×3). А с объективом 200 мм уже 1/600 с!

Чем больше фокусное расстояние объектива, тем сильнее дрожит картинка. Поэтому стабилизация изображения особенно важна при работе с телеобъективами. Многие длиннофокусные объективы (такие как этот Nikon AF-P NIKKOR 70–300mm f/4.5–5.6E ED VR) оснащаются встроенной системой оптической стабилизации.
NIKON D850 / 70.0-300.0 mm f/4.5-5.6 УСТАНОВКИ: ISO 1100, F5.6, 1/200 с, 300.0 мм экв.Есть одно но: если света недостаточно, при съёмке на более коротких выдержках придётся повышать ISO, что чревато появлением цифрового шума на фото. Поэтому не всегда получается снимать на коротких выдержках без потерь…
Использовать штатив — отличный способ избавиться от смазанных кадров! Но только если вы снимаете неподвижные объекты или, наоборот, хотите сильно размыть движение в кадре. Штатив — незаменимый инструмент архитектурного, пейзажного, предметного фотографа. Он надёжно фиксирует камеру, и на любой выдержке неподвижные объекты остаются резкими. Его используют и в репортажных, динамичных сюжетах, если съёмка ведётся супертелеобъективами. По сути, штатив — это «физический» стабилизатор нашей камеры.

Кадры на выдержке в несколько секунд снимают только со штатива. Такие выдержки помогут творчески передать движение в кадре. В нашем случае за счёт длинной выдержки размыт поток воды в водопаде.
Но штатив не панацея от смаза. Пока дело касается неподвижных объектов, он полезен. Но для «заморозки» динамики в кадре требуется достаточно короткая для этого движения выдержка. Если для сидящего человека хватит 1/60 с, то для бегуна потребуется как минимум 1/500 с, иначе произойдёт смаз объекта съёмки. Таким образом, при съёмке быстрого движения без правильной настройки выдержки штатив никак не поможет.


Для стабилизации изображения при видеосъёмке, помимо классических штативов-треног, используются особые гироскопические стабилизаторы, которые компенсируют все вибрации, поступающие на камеру от рук оператора. Один из таких стабилизаторов — Moza Air 2 — поставляется в специальном наборе Nikon Z6 Filmmaker’s kit.

Все вышеперечисленные варианты не универсальны. Достаточно короткую выдержку не всегда позволяют взять условия освещения, а штатив применяют в основном для съёмки статичных сюжетов.
И тут на помощь приходят функции стабилизации изображения, встроенные в фотокамеру или объектив.
Как измеряется эффективность стабилизации?
Эффективность стабилизации принято измерять в ступенях экспозиции (EV — Exposure Value). Как это понимают практикующие фотографы?
Например, если без стабилизатора мы систематически получаем резкие кадры на выдержке вплоть до 1/60 с (на более длинных выдержках всё смазывается), а с ним большинство кадров оказывается резкими до выдержки в ¼ с, то этот стабилизатор имеет эффективность в 4 ступени.
Ряд значений выдержки с шагом в одну ступень экспозиции
Мы можем сосчитать, насколько длинные выдержки позволит использовать стабилизатор. Почему бы сразу не указывать максимальную выдержку, доступную при работе стабилизатора? Зачем эти сложные ступени экспозиции? Дело в том, что многое зависит и от фокусного расстояния, при котором ведётся съёмка. Если на фокусном расстоянии в 15 мм можно и без стабилизатора снимать на 1/30 с (см. формулу расчёта максимальной выдержки) и получать чёткие кадры, то при съёмке на фокусном расстоянии в 400 мм только очень эффективный стабилизатор, способный сэкономить 5 ступеней экспозиции, позволит приблизиться к выдержке в 1/30 с. Ведь чем больше фокусное расстояние объектива, тем сильнее ощущается дрожание картинки. И чтобы не делать постоянных оговорок касательно фокусного расстояния, эффективность стабилизатора измеряют в ступенях экспозиции EV. Этот показатель даёт ясное представление о том, чего ждать от той или иной системы стабилизации. Такой метод измерения используют и в журнале Prophotos при тестировании камер и объективов.

Но есть строгая методика измерения CIPA, на которую равняются производители фототехники. Она работает несколько иначе. «Безопасная» выдержка для съёмки без стабилизатора вычисляется не на практике, а просто по формуле «1/фокусное расстояние», как в плёночные времена. Обратите внимание, что здесь не используется множитель ×2, как в приведённой выше формуле. На современных камерах с высокой детализацией нужно сильно постараться, чтобы, например, получить на 1/200 с резкий кадр при съёмке на объектив с фокусным 200 мм. Следовательно, раз за точку отсчёта исследователи берут заведомо слишком длинную выдержку, не гарантирующую резких кадров, они дают тестируемому стабилизатору некоторую фору, и результаты подчас выглядят более оптимистичными, чем выходит на практике.
Электронная стабилизация. Для работы электронной стабилизации не нужны никакие сложные технические приспособления. Достаточно чтобы эта функция поддерживалась программным обеспечением фотоаппарата. Как правило, она применяется при видеосъёмке и помогает получить более плавную, не дрожащую картинку. В камерах Nikon этот вид стабилизации можно активировать для съёмки видео в меню.

При электронной стабилизации часть картинки обрезается, угол обзора сужается. За счёт обрезанного поля изображения камера и компенсирует дрожание камеры, двигая картинку в зависимости от перемещения камеры в пространстве.
Часто можно выбрать несколько степеней электронной стабилизации. Чем выше уровень стабилизации, тем сильнее обрезается картинка.
Видео с отключённой электронной стабилизацией:
Видео со включённой электронной стабилизацией. Угол обзора уже, но картинка дрожит меньше:
У такого типа стабилизации есть недостаток: картинка обрезается по краям, а значит теряется качество изображения и уменьшается угол обзора. Зато он самый недорогой — для его реализации нужно лишь программное обеспечение. Кстати, такой тип стабилизации можно реализовать не только при съёмке видео, но и при обработке его на ПК. Некоторые программы для видеомонтажа тоже имеют функции электронной стабилизации.

Оптическая стабилизация в объективе
Если на вашем объективе Nikkor красуются буквы VR (Vibration Reduction), значит он оснащён системой оптической стабилизации. Другие производители объективов тоже имеют свои системы стабилизации: они сходны по принципу действия, а вот названия технологий отличаются.
В объективе, оснащённом системой оптической стабилизации, есть специальный подвижный блок линз и установлены гироскопические датчики. Датчики распознают вибрации, а блок линз за счёт движения в противофазе гасит их. В камеру попадает уже картинка без дрожания.

Пример блока оптической стабилизации

Nikon AF-S 24–70mm f/2.8E ED VR Nikkor — пример объектива с оптическим стабилизатором
Эта система стабилизации существует на рынке довольно давно, и фотографы успели к ней привыкнуть, распробовать её плюсы. Сегодня многие объективы оснащаются такой системой стабилизации. Даже простые «китовые» зумы имеют VR.
Современный стабилизатор в объективе умеет гасить вибрации по 2–4 осям: наклоны вверх-вниз и наклоны вправо-влево, линейные смещения вверх-вниз и вправо-влево. Неподвластным ему остаётся лишь вращение камеры вокруг оптической оси объектива. Эффективность современных оптических стабилизаторов в среднем составляет от 3 до 5 ступеней экспозиции, но этот показатель может меняться от модели к модели объектива. Эффективность стабилизатора для конкретной модели объектива производитель указывает в его характеристиках. А как поведёт себя стабилизатор в реальных условиях съёмки, исследуют авторы Prophotos.ru в рамках тестов объективов.
Некоторые продвинутые объективы (например, Nikon AF-S NIKKOR 70-200mm f/2.8E FL ED VR) могут иметь несколько режимов работы оптического стабилизатора.

Переключатель, отвечающий за работу с VR, имеет несколько положений. Если с OFF всё понятно (это выключение стабилизатора), то что за два других режима NORMAL и SPORT? В режиме NORMAL стабилизация происходит постоянно, даже при простом визировании картинки через видоискатель. Кстати, когда в видоискателе картинка не дрожит, «целиться» в объект съёмки гораздо удобнее — и фотографу, и системе автофокуса. Также этот режим распознаёт характер вибрации, и если вы захотите сделать панорамирование, съёмку с проводкой, он не будет гасить эти движения камеры. Режим SPORT используется тогда, когда вибрации непредсказуемы и хаотичны. В этом режиме стабилизация происходит только в момент съёмки, камера гасит любые колебания. Этот режим хорошо подойдёт, например, для съёмки из окна едущего автомобиля.
Видеопример: съёмка без оптического стабилизатора и с включённым стабилизатором
Считается, что среди телеобъективов наилучшие результаты показывает именно стабилизация в объективе, а не на матрице (об этом типе стабилизации чуть ниже). Ведь модуль стабилизации в объективе приспособлен для работы с большим фокусным расстоянием.

У стабилизации в объективе есть и свои нюансы. Разные объективы оснащены разными стабилизаторами. А это значит, что в работе фотографу придётся учитывать особенности каждого из них. У какого-то стабилизатор более эффективен, у какого-то менее, а у третьего его нет вообще. Это придётся учитывать при съёмке, настройке выдержки и других параметров. Как уже упоминалось, стабилизатор в объективе не может гасить колебания по оси кручения, и по этой причине новички часто получают смаз из-за резкого нажатия кнопки спуска. Блок стабилизатора в объективе — это прибавка в весе, да и в цене оптического изделия. Объективы без стабилизатора, как правило, легче и стоят дешевле.
Стабилизация на матрице
Данная технология сравнительно новая, но она уже завоевала немало приверженцев. Суть в том, что механизм стабилизации находится не в объективе, а на матрице фотоаппарата. Матрица установлена на специальном механизме, который, двигая её, гасит вибрации камеры. Такая технология используется в беззеркальных камерах Nikon Z 6 и Nikon Z 7. Благодаря размещению всего механизма на матрице, можно обеспечить компенсацию вибраций не по четырём, а по пяти осям. Заявленная эффективность матричной стабилизации в новых беззеркалках от Nikon — до 5 ступеней экспозиции. Серьёзный показатель, особенно для полнокадровой камеры! Ведь полнокадровая матрица крупнее и тяжелее прочих, приводу стабилизации труднее двигать её в нужную сторону.

Раз стабилизация находится на матрице, то её получает любой объектив, установленный на фотоаппарат. Даже если это старый мануальный фикс. Правда, в таком случае стабилизация будет не по пяти, а максимум по трём осям. Для работы оставшихся двух камере нужна информация о дистанции съёмки, а её такие модели не передают.
А если на Nikon Z 6 или Nikon Z 7 установить объектив, имеющий собственный стабилизатор, системы будут работать в паре, обеспечивая ещё более высокий уровень стабилизации.

Как использовать оптическую стабилизацию?
Работать с оптической стабилизацией тоже придётся учиться. Иногда фотографы в разгаре съёмки вообще забывают о грамотной настройке параметров. А иногда пользователь злоупотребляет излишне длинными выдержками, надеясь на эффективную работу стабилизатора. Но даже если камера отработает секундную выдержку без вибраций, движение в кадре всё равно может оказаться смазанным. Так, позирующие модели будут смазаны на выдержках длиннее 1/60 с. Фотографу нужно научиться подбирать выдержку, достаточную для «заморозки» движения в кадре, иначе от стабилизатора пользы не будет, ведь он компенсирует лишь вибрации камеры в руках, а не движения ваших героев.
А вот при съёмке на выдержке в секунду, две, десять лучше уже использовать штатив. Результат со штатива всегда предсказуем. Но при необходимости можно научиться и без штатива, с одним лишь стабилизатором получать резкие кадры на выдержках до нескольких секунд. Об этом мы рассказали в отдельном уроке. Но в большинстве случаев хорошо, если стабилизатор будет вашей подстраховкой, а не последней надеждой на резкий снимок. Во время съёмки дрогнула рука или вас толкнули? «Стаб» защитит кадр!

Стабилизацию принято отключать при установке камеры на штатив. Не во всех объективах стабилизаторы корректно отрабатывают длинные выдержки, иногда их работа становится причиной смазанных кадров. Чтобы не искушать судьбу, стабилизатор в объективе при установке камеры на штатив отключают. Но по опыту могу сказать, что в новых Nikon Z 7 и Nikon Z 6 работает корректно даже на выдержках в несколько секунд. К примеру, я снимал на длинной выдержке с Парящего моста в парке Зарядье. Конструкция моста такова, что он всегда немного вибрирует. Благодаря эффективной работе стабилизатора в Nikon Z 7, я получил здесь чёткие кадры.

Стабилизатор очень важен при работе с камерами, имеющими высокое разрешение, такими как Nikon Z 7 и Nikon D850. 45 Мп сделают заметным мельчайший смаз в кадре! Поэтому очень хорошо, что у Nikon Z 7 есть стабилизатор прямо на матрице — он будет полезен практически на каждой съёмке! Даже если вы не знаете, что он есть в камере, «стаб» будет стоять на страже резкости ваших снимков.
prophotos.ru
Стабилизатор изображения в зеркальных фотоаппаратах: для чего нужен
Дорогой мой читатель, здравствуй! С вами на связи, Тимур Мустаев. На блоге мы уже разбирали особенности такой съемки, при которой получаются четкие и выразительные кадры. Это во многом зависит от умения выставлять параметры фотоаппарата (выдержка, диафрагма, ISO), в том числе и фокус.
Но все же, почему фотографии могут быть иногда смазанными? Что еще нужно учитывать в процессе фотографирования, чтобы этого не происходило?
Работа стабилизатора в фотокамере
Сегодня мы разберемся с понятием стабилизатор изображения в зеркальных фотоаппаратах. Итак, что это и зачем он нужен?
Дело в том, что объектив и сам корпус фотоаппарата содержат набор сложных внутренних механизмов. Среди них есть чувствительные датчики, отвечающие именно за восприятие движения камеры в разных направлениях и с разной скоростью. То есть, процессор фотоаппарата изначально учитывает возможность возникновения некой погрешности в получении изображения.
С помощью специального устройства, противодействующего данному движению, проецируемое изображение на экране мы видим отчетливо, без ощутимого смазывания.
Безусловно, в определенных моментах стабилизатор в камере нужен, без него фотография получится намного худшего качества, чем с ним. Это касается даже дешевеньких “мыльниц”. Но встроенная стабилизация имеет свои пределы. Давайте разберем все подробнее.
Когда стабилизация необходима:
- Дрожание рук и неустойчивое положение фотографа.
- Сильный ветер, съемка в движении или движущихся объектов.
- Длиннофокусные объективы. Большое фокусное расстояние может дать значимую “шевеленку”, которая обязательно отразится и на фото.
- Длинная выдержка, необходимая для особых визуальных эффектов на снимке или при низкой освещенности. Когда увеличивается время срабатывания затвора и в итоге создания кадра, соответственно, вероятность, что камера шевельнется, возрастает.
Следствием дестабилизации изображения неизменно является смазанная, нечеткая картинка. Данные проблемы в некоторых случаях решаемы. Так, проблему № 1 и частично № 2 можно решить, используя штатив при съемке, или же нужно занять более устойчивое положение с опорой на обе ноги.
Весьма полезно приучать себя не двигаться, замирать при фотографировании. Часто у новичков с этим сложности, а ведь фотоаппарату нужно время сделать кадр, и в этом плане лишние движения ни к чему.
Чтобы избежать дрожания камеры при работе с большими фокусными расстояниями, как вариант, можно подойди поближе, если позволяют условия съемки, тогда не придется выкручивать зум аппарата.
Портретные и широкоугольные объективы хорошо себя проявляют и без стабилизатора. А насчет выстраивания выдержки существует правило: выдержка обратно пропорциональна фокусному расстоянию (F). Например, если F=50 мм, то выдержка должна быть не менее 1/50 сек. При условии, что у вас полнокадровый фотоаппарат.
Если у вас кроп, но нужно умножить число на значение кроп-фактора (1,6 для Canon и 1,5 для Nikon). Тем самым получим 1/80 и 1/75 соответственно. Тем самым, снимать ниже этих пределов не рекомендуется во избежание шевеленки. Старайтесь соблюдать правило, хотя и оно не может быть абсолютным гарантом получения резкого кадра.
При сильной внешней вибрации (съемка при беге или в движущейся машине, на открытом пространстве при очень ветреной погоде и т.д.) даже хороший стабилизатор вас вряд ли спасет — просто учитывайте это при съемке.
Стабилизация в камерах разных моделей
Где искать стабилизатор в камерах? Переключатель обычно находится на самом объективе сбоку, рядом с автофокусом. И с ним все просто – вкл. и выкл.
Иногда, правда, в некоторых камерах есть активный и нормальный режимы работы стабилизатора. Первый стоит включать при больших колебаниях техники, а второй в ходе обычной спокойной съемки. Их различия заключается в тех частотах и амплитудах движения камеры, которые они могут погасить.
Независимо от камеры, у стабилизаторов принцип один – сделать резкое изображение, не допустить появление смазов и нечеткости. Единственное, названия его могут быть разными: так, в фотоаппаратах Canon кнопка стабилизации называется Image Stabilization, у Nikon – Vibration Reduction. Аббревиатура, которую вы найдете на своих фотокамерах, соответственно, IS и VR.
Это что касается стабилизатора в объективе, но есть и другие варианты, имеющие свои достоинства. Производители некоторых фотоаппаратов (например, Olympus, Sony, Nikon, Canon) сделали стабилизатор, встроенный в саму матрицу камеры.
Можно сказать, что стабилизация в объективе удобна, но с другой стороны… а если вам попадется оптика без стабилизатора и в самой матрице его не будет?
Скорей всего с такими параметрами фотоаппарата вы выиграйте в его более низкой цене, но в качестве проиграете. Таким образом, стабилизатор в матрице надежнее, он позволяет меньше задумываться, есть ли или нет данная функция у определенного объектива.
Например, такой стабилизатор в фотокамерах Nikon называется «подавление шума» и устанавливается в меню.
Внешний стабилизатор
Что может выступить дополнительным средством для стабилизации камеры? Конечно, это штатив. Здесь мы имеем большое разнообразие в выборе, это может быть, как тринога, так и монопод. Пару слов о требованиях к штативу.
- Тяжелый штатив из металла, а не пластика, выйдет дороже по цене и его сложнее носить с собой из-за веса, но он более устойчив. Это несомненный плюс для стабилизации.
- Чем выше вы выдвигаете штатив, тем больше становится возможность дрожания камеры.
- Ножки: они должны хорошо фиксироваться.
Будьте внимательны: стабилизацию рекомендуют отключать при использовании штатива. Считается, система стабилизатора в таких условиях может сбиться и дать отрицательный результат.
Любые утяжелители для камеры – это, фактически, стабилизаторы своими руками. Здесь умельцы предлагают много вариантов, но главное это – хорошая устойчивость на земле и неподвижность всей конструкции, достигаемая за счет ее веса.
Если вас заинтересовала информация и вы готовы пойти дальше в обучении фотоискусству. Если вы хотите научиться фотографировать и получать красивые фотографии, то сегодня это стало возможно. Предлагаю вам в качестве гида, видео курс «Моя первая ЗЕРКАЛКА». Это ряд видео уроков, которые помогут вам понять основные и важные моменты получения качественных фотографий.
Моя первая ЗЕРКАЛКА — для обожателей зеркальной камеры CANON.
Цифровая зеркалка для новичка 2.0 — для обожателей зеркальной камеры NIKON.
На сегодня все. Жду вас на моем блоге снова, до свидания и до новых встреч!
P.S. Не забывайте подписываться на новости и приглашать своих знакомых и друзей и делиться в социальных сетях, еще не кто не отменял.
Всех вам благ, Тимур Мустаев.
fotorika.ru
Для чего нужен стабилизатор изображения
Процент резких изображений в зависимости от выдержки
Введение
Я пользуюсь техникой компаний Canon и Nikon. Их стабилизаторы имеют названия IS и VR. IS (Image Stabilization) это аббревиатура компании Canon, VR (Vibration Reduction) – Nikon. Стабилизатор изображения помогает мне получить гораздо более четкое изображение с длиннофокусными объективами, а также при низком уровне освещения.
IS и VR настолько важны для получения отличных снимков, что я не буду покупать объектив без них, если есть выбор.
Как я покажу далее, даже компактные фотоаппараты типа «навел и снял» с IS снимают гораздо резче, чем дорогие зеркалки с объективом без стабилизатора при некоторых условиях.
VR против IS
VR (Nikon) и IS (Canon) это одно и то же. Я буду использовать оба термина как синонимы. Каждый производитель использует свои собственные сокращения.
Обе эти системы стабилизируют изображение, чтобы избежать смаза от дрожания рук. Это помогает во многих случаях обойтись без штатива и получить резкие фотографии. VR и IS позволяют мне снимать при плохом освещении без использования штатива, за исключением совсем уж темного времени суток ( сумерки или ночь).
VR и IS превосходно работают при съемке неподвижных объектов, я как раз снимаю большинство таких кадров. Конечно, для съемки движущихся объектов, спорта или детей системы стабилизации бесполезны.
Некоторые люди хотели бы использовать VR и IS для съемки с проводкой, в этом случае стабилизатор работает в одном направлении, в то время как в других снимок получается размытым.
Чтобы получить резкий кадр быстро движущегося объекта, вам придется все равно использовать либо светосильный объектив, либо больше света, либо поднять ISO.
Стабилизатор помогает только компенсировать дрожание камеры, но не может ничего сделать с движущимися объектами.
Другие производители
Minolta, Panasonic, Olympus и Sony
Minolta (теперь Sony) выпускает зеркальные камеры, в которых стабилизатор изображения уже встроен в фотоаппарат. Я не пробовал эти системы. Преимуществом их, как утверждает производитель, является то, что они работают с любыми объективами, так как стабилизатор находится в камере, а не в объективе.
Anti – Shake
Остерегайтесь подобных названий. Большинство производителей, использующих этот термин, обманывают потребителя и просто повышают ISO, чтобы получить более короткую выдержку. Вы и сами можете увеличить ISO. Обычно такие камеры не компенсируют дрожание рук, как это делает система VR и IS.
Как работают стабилизаторы
Я пропущу подробности, основной принцип в том, что датчики движения предугадывают его направление и скорость в начальной фазе, когда фотограф нажимает кнопку затвора и делает кадр.
Затем они используют различные устройства сдвига линз или матрицы в противофазе с детектируемым сигналом ошибки, чтобы противодействовать этому движению.
За счет этого происходит стабилизация изображения при экспонировании.
Вы можете увидеть работу стабилизатора через видоискатель зеркальных фотоаппаратов или на экранчике компактных, нажав до половины кнопку спуска затвора.
График и действительность
Дрожание рук, которое врачи называют тремором, имеет случайный характер.
Сделайте достаточное количество фотографий в любых условиях. Некоторые будут резче, некоторые более размытыми. Процент попаданий зависит от условий, выдержки, фокусного расстояния.
На графике показано, как процент ваших резких снимков зависит от выдержки. На очень длинных выдержках, например, 30 секунд, почти никогда не получите резкий кадр, независимо от наличия стабилизатора. Но вероятность этого не равна нулю, так как есть счастливый случай.
На коротких выдержках, таких как 1/1000, вы получите резкие снимки почти в 100% случаев, опять же независимо от наличия стабилизатора. Но почти 100% это не чистые 100%. Бывают и исключения из правил.
Это все сводится к методам теории вероятности и статистического анализа. Математики смогут это лучше объяснить.
Сказки старых бабок о том, что выдержка должна быть не длиннее 1/30 или 1/(фокусное расстояние) происходят из наблюдения, что большинство людей получают около 50% резких снимков при этих условиях. Это как раз соответствует среднему участку черной кривой на графике. Будучи случайной функцией, более короткая выдержка дает более высокий процент резких снимков, и наоборот.
Трюк
Так как съемка это игра, то я стараюсь увеличить свои шансы на успех с помощью серийной съемки. Я увеличиваю значение выдержки и делаю несколько кадров подряд в этом режиме. Позже я выбираю самые резкие. Чем длиннее выдержка, тем большую длину серии нужно сделать. Чтобы получить хоть один резкий снимок. Например, если вероятность получить резкий снимок 10%, то я делаю 10 или 20 снимков серией и выбираю лучший. Это работает!
Точно также мы можем получить и смазанный кадр с нормальным объективом при выдержке 1/250 секунды. Но это не должно случаться часто, в противном случае подучитесь обращению с камерой.
Стабилизатор в этом случае всегда увеличивает шансы на успех. Я не знаю случаев, чтобы это было не так.
Когда стабилизатор эффективен?
VR и IS дают значительное улучшение в том месте, где кривые графика идут раздельно. Попробуйте снимать с выдержкой около 1/2 – 1/15 с нормальным объективом и вы увидите разницу, как между ночью и днем. С более короткими выдержками снимки и так будут резкими, с более длинными – и стабилизатор уже не поможет.
Примеры

Изображение комнаты, где сделаны кадры
Я делал снимки фотоаппаратом Nikon D200 c объективом 18-135 без стабилизатора и фотоаппаратом Nikon D70 с объективом 18-200 mm VR. Я покажу фото с D70 в масштабе 100%, а с D200 немного меньше, чтобы они совпали.
Наведите курсор, чтобы увидеть разницу

Теперь вы понимаете , почему я считаю, что лучше купить дешевле сам фотоаппарат (тушку), а объектив купить подороже? Помните, что объективы могут служить долгие годы, а тушки меняются чуть не каждый год. Более дешевый D70 с объективом 18-200 с системой VR снимает гораздо лучше на более длинных выдержках, чем гораздо более дорогой D200 без объектива с VR.
Конечно, они сравнивались при фокусном расстоянии 28 мм и выдержке 1/4 секунды, где стабилизатор имеет большое значение. При более коротких выдержках разница не будет столь существенной, но она проявится на больших фокусных расстояниях, даже в солнечный день.

Наведите курсор на изображение, чтобы сравнить снимок, сделанный на D200 без объектива VR и компактный фотоаппарат Canon SD700 с системой IS.
Стабилизатор изображения является ключом к получению резких снимков в типичных условиях освещения в помещении. Даже маленькая карманная камера со стабилизатором может с легкостью победить зеркалку, если используется объектив без стабилизатора, при условии съемки с недостаточным освещением без штатива.
Для каждой из картинок я сделал по шесть снимков. Со стабилизатором пять или шесть были резкими. Без стабилизатора пять или шесть получались смазанными. Я сделал достаточно много снимков, чтобы выборку можно было назвать репрезентативной.
Извините, что размер снимков и экспозиция совпадают не полностью, так как я снимал разными типами фотоаппаратов. Как ни странно, снимки с карманной камеры выглядят более резкими, видимо, это связано с тем, что при внутрикамерной обработке используется более сильное повышение резкости по сравнению с зеркалкой.
Штативы
Я обычно выключаю стабилизатор на штативе, так как он не нужен. Но если даже и забуду, то не вижу в этом проблемы.
Многие системы стабилизации достаточно умны, чтобы определить, что фотоаппарат находится на штативе и отключиться. Но если вы снимаете при сильном ветре или штатив не очень устойчив, стабилизатор вам также поможет.
Съемка на длинной выдержке
Если вы снимаете с рук с длинной выдержкой, порядка нескольких секунд, стабилизатор, как правило, несколько улучшит результат.
Диапазоны частот
Вибрация имеет амплитуду и частоту. Системы стабилизации способны обрабатывать колебания только в определенной полосе частот.
Интересующий нас диапазон лежит в пределах от 0,3 Гц до 30 Гц.
VR и IS игнорируют очень низкие частоты, так как иначе их работа будет создавать трудности при съемке с проводкой или слежением.
Частоты выше 30 Гц также не являются особо важными. Наши мышцы не сокращаются быстрее 30 раз в секунду, а внешние высокочастотные вибрации фильтруются массой нашего тела и массой камеры.
Никогда не ставьте камеру на нечто, что вибрирует с высокой частотой. Держите ее в руках, чтобы вибрации гасило ваше тело.
Выше определенного диапазона амплитуды (силы вибрации), механика системы стабилизации уже не может скомпенсировать ее, чтобы противодействовать большому смещению, например, если вы снимаете с машины, которая едет по бездорожью.
Активный или нормальный режим (Nikon)
Если у вас на объективе есть переключатель этих параметров, то он оптимизирует систему для различных частот и амплитуд
Активный режим подходит для больших амплитуд смещения, которые игнорируются в обычном режиме, полагая что вы делаете проводку.
Я никогда не видел различия в их производительности, как правило, снимаю в нормальном режиме. Полагаю, что если я снимаю что-то движущееся, система VR не справится так или иначе. Иногда я пользуюсь активным режимом, но не часто.
Самолет
Системы стабилизации предназначены для компенсации тремора рук, а не съемки из движущихся автомобилей или вертолетов. Это гораздо более сильные вибрации, которые требуют внешних стабилизаторов типа гироскопов.
При съемке с самолета никогда не опирайте камеру на дверь или любую другую часть самолета. Вместо этого держите камеру в руках и сидите прямо, отодвинув плечи от сиденья, таким образом, ваше тело поглотит максимальное количество вибраций.
Как всегда, приходится действовать методом проб и ошибок. Когда я снимал из открытых иллюминаторов небольшого самолета, система VR Nikon не смогла с этим справиться, что, в общем-то, логично, так как она не предназначена для этого.
Очень короткая выдержка
VR и IS очень хорошо работают и при коротких выдержках, особенно с длиннофокусными объективами, где можно ощутить разницу.
Благодаря современной цифровой технике мы можем сразу оценить результат, что было невозможно при съемке на пленку. Если изображение даже немного размыто, это легко увидеть на экране камеры.
Таким образом, снимки даже при выдержке 1/1000 секунды с 300-мм объективами могут стать лучше при использовании стабилизатора. Я использую его все время.
Хотя система стабилизации не реагирует на высокие частоты вибрации, эти вибрации никогда не были проблемой для короткой выдержки.
Проблема при съемке с короткой выдержкой та же самая – вибрация с частотой 0,3 Гц – 30 Гц. Короткая выдержка уменьшает влияние вибрации, поэтому VR не так эффективна при короткой выдержке, однако, с длиннофокусными объективами, которые очень чувствительны к вибрациям, VR и IS весьма полезны.
С короткофокусными объективами на коротких выдержках, как правило, вибрация не является проблемой, однако, стабилизатор может улучшить положение вещей и здесь, насколько это возможно.
Хотя вибрации высокой частоты не являются проблемой, они могут порождать субгармоники, попадающие в диапазон 0,3 Гц – 30 Гц, которые усиливаются длиннофокусными объективами. Как раз с такими вибрациями эффективно справляется система стабилизации.
Отказы
VR и IS системы могут иногда выйти из строя и работать с ошибками. Если это случилось, отключите их, пока не появится возможность сдать объектив в ремонт.
Мой первый Canon 28-135mm IS имел интересный дефект стабилизатора. Он хорошо работал на длинных выдержках, но при дневном свете и коротких выдержках снимки получались хуже!
Я отослал его к Canon по гарантии, и Canon быстро заменил систему, в результате чего объектив стал работать без сбоев.
Вот почему я всегда проверяю вновь купленные объективы. Снимаю со стабилизацией и без нее, при разных выдержках и фокусных расстояниях, чтобы узнать, где я получу наилучшие результаты. Таким образом вы сможете даже поймать редкий заводской дефект.
Рекомендации
Использование IS и VR имеет большое значение для получения резкого изображения примерно до 1/60 секунды с нормальными объективами и, приблизительно до 1/500 секунды с телеобъективами.
При выдержке более чем в несколько секунд эффективность стабилизации уменьшается, но все же это лучше, чем ничего, если у вас нет штатива или невозможно поставить камеру на что-то твердое.
Стабилизатор может помочь даже при очень коротких выдержках с длиннофокусными объективами
Мои лучшие снимки сделаны на открытом воздухе в сумерках. Поэтому я люблю VR и IS
Я всегда держу систему стабилизации включенной, за исключением того, когда аппарат стоит на очень крепком штативе. Также я использую стабилизатор при съемке с моноподов.
Автор: Ken Rockwell
photo-monster.ru
Стабилизация изображения — Image stabilization
Стабилизация изображения ( IS ) представляет собой семейство методов , которые уменьшают смазывание изображения , связанные с движением в камерах или другого устройстве формирования изображения во время экспозиции .
Как правило, она компенсирует кастрюлю и наклон (угловое перемещение, эквивалентное рыскания и тангажа ) устройства формирования изображения, хотя электронная стабилизация изображения может также компенсировать вращения. Он используется в графических стабилизированный бинокль , еще и видео камеры, астрономических телескопов , а также смартфоны , в основном высокого класса. С фотоаппаратами , дрожанием камеры является особой проблемы при медленных скоростях затвора или с большим фокусным расстоянием ( телефото или увеличением ) линзами. С видеокамерами , дрожание камеры вызывает видимый кадр к кадру джиттера в записанном видео. В астрономии, проблема объектива дрожание усиливается изменением в атмосфере , которая изменяет видимые положения объектов с течением времени.
Применение в еще фотографии
В фотографии, стабилизация изображения может облегчить скорость затвора 2-4,5 останавливается медленнее (обнажения 4-22.5 раза дольше), и даже медленнее эффективной скорость сообщались.
Правило , чтобы определить самую низкую скорость затвора возможной для ручного проведения без заметного размытия вследствие дрожания камеры, чтобы взять обратные из 35 — мм эквивалента фокусного расстояния объектива, также известное как «1 / мм правило». Например, при фокусном расстоянии 125 мм на 35 мм камеры, вибрация или дрожание камеры может повлиять на резкость , если скорость затвора меньше 1/125 секунды. В результате на 2-4,5 останавливается медленнее скорости затвора , допускаемые IS, изображение принято на второй скорости 1/125 с обычной линзой может быть принято на 1/15 или 1/8 секунды с IS-оборудованной объективом и производят почти то же самое качество. Резкость можно получить при заданной скорости может резко увеличиться. При расчете эффективного фокусного расстояния, важно принимать во внимание формат изображения камера использует. Например, во многих цифровых зеркальных камер используют датчик изображения, которое 2/3, 5/8, 1/2 или размер кадра пленки 35 мм. Это означает , что 35 мм кадра составляет 1,5, 1,6 или 2 раза превышает размер цифрового датчика. Последние значения называются как фактор урожая , поля зрения из-фактора урожая, фокусное расстояние множитель, или фактор формата. На фактор камеры 2x культур, например, 50 мм объектив производит то же поле зрения , как 100 мм объектива , используемого на пленочной камеры 35 мм, и может быть , как правило , карманным компьютером в 1/100 секунды.
Тем не менее, стабилизация изображения никак не предотвратить размытость изображения , вызванную движением объекта или экстремальными движениями камеры. Стабилизация изображения предназначена только для и способна уменьшать размытость , которая является результатом нормального, минутного встряхивания линзы из — за ручную съемку. Некоторые линзы и камеры органы включают вторичную панорамирование режим или более агрессивный «активный режим», как описанный более подробно ниже в разделе оптической стабилизации изображения .
Возможности стабилизации изображения также может быть польза в астрофотографии , когда камера технически , но не эффективно фиксировали на месте. Pentax K-5 и Kr могут использовать их способность датчика сдвига для уменьшения звездных трасс в разумное время экспозиции, когда оборудованы О-GPS1 аксессуар GPS для данных о местоположении. Фактически, стабилизация компенсирует движение Земли , а не камеры.
Есть два типа реализации линзы на основе, или стабилизации тела на основе. Это относится, где находится система стабилизации. Оба имеют свои преимущества и недостатки.
методы
Оптическая стабилизация изображения

Оптический стабилизатор изображения , часто сокращенно ОИС, IS, или ОС, является механизм , используемый в неподвижном камеры или видеокамеры , которое стабилизирует записанное изображение посредством изменения оптического пути к датчику. Эта технология реализована в самом объективе, в отличии от в-тела стабилизации изображения , который действует путем перемещения датчика в качестве конечного элемента в оптическом пути. Ключевым элементом всех оптических систем стабилизации является то , что они стабилизируют изображение , проецируемое на датчике до того , как датчик преобразует изображение в цифровую информацию.
Разные компании имеют разные названия для технологии OIS, например:
- Подавление вибраций (VR) — Nikon (произведен первый оптический две оси стабилизированный объектив, 38-105 мм F / 4-7.8 зум , встроенный в Nikon Увеличить 700VR (США: Zoom-сенсорный 105 VR) камеры в 1994 году)
- Стабилизатор изображения (IS) — Canon представила EF 75-300mm F4-5.6 IS USM) в 1995 г. В 2009 году они представили свой первый объектив (ФВ 100mm F2.8 Macro L) использовать четыре оси Hybrid IS ).
- Anti-Shake (AS) — Minolta и Konica Minolta (Minolta представила первый датчик на основе 2-осевой стабилизатор изображения с DiMAGE A1 в 2003 году)
- IBIS — в теле стабилизации изображения — Olympus
- Optical SteadyShot (OSS) — Sony (для камеры Cyber-shot и несколько альфа E-байонет )
- MegaOIS, PowerOIS — Panasonic и Leica
- SteadyShot (СС), Super SteadyShot (СНО), SteadyShot INSIDE (SSI) — Sony ( на основе от Konica Minolta Anti-Shake изначально, Sony представила 2-осевой вариант с полным-кадра для DSLR-A900 в 2008 году и 5-осевой стабилизатор для полнокадрового ILCE-7M2 в 2014 году)
- Оптическая стабилизация (ОС) — Sigma
- Компенсации вибрации (VC) — Tamron
- Стабилизации изображения (SR) — Pentax
- PureView — Nokia (выпустил первый мобильный телефон оптического датчика стабилизировался, встроенным в Lumia 920 )
- UltraPixel — HTC (стабилизация изображения доступна только для 2013 HTC One & 2016 HTC 10 с UltraPixel Он не доступен для HTC One (M8) или HTC Butterfly S, которые также имеют UltraPixel.)
Большинство высокого класса смартфонов, как в конце 2014 использования оптической стабилизации изображения для фотографий и видео.
Объектив на основе
В Nikon и реализации компании Canon , она работает с использованием элемента плавающей линзы , которая перемещается перпендикулярно к оптической оси объектива с помощью электромагнитов. Вибрация детектируют с помощью двух пьезоэлектрических угловой скорости датчиков (часто называемые гироскопические датчики), один для обнаружения горизонтального перемещения , а другой для обнаружения вертикального перемещения. В результате, этот вид стабилизатора изображения корректирует только для основного тона и осей поворота вокруг вертикальной оси вращений, и не может исправить вращения вокруг оптической оси. Некоторые объективы имеют дополнительный режим , который противодействует вертикальное только дрожание камеры. Этот режим полезен при использовании панорамирования техника, и переключение в этом режим зависит от объектива; иногда это делается с помощью переключателя на объективе, или он может быть автоматическим.
В основном для использования видео во время ходьбы , чтобы компенсировать дрожание , Panasonic представила мощность Hybrid OIS + с коррекцией 5-оси: ось вращения, горизонтальное вращение, вертикальное вращение, по горизонтали и вертикали.
Некоторые из более поздних VR-совместимых объективов Nikon предлагают «активный» режим для съемки из движущегося транспортного средства, например, автомобиль или катер, который должен исправить для больших встрясок, чем «обычный» режим. Однако активный режим используется для обычной съемки может производить худшие результаты, чем при обычном режиме. Это потому, что активный режим оптимизирован для уменьшения выше угловых перемещений скорости (обычно при съемке с сильно подвижной платформой, используя более короткие выдержки), где нормальный режим пытается уменьшить ниже угловые перемещения скорости по большей амплитуде и периоду времени (как правило, тело и руки движения стоя на неподвижной или медленно движущейся платформе, используя более низкую скорость затвора).
Большинство производителей позволяют предположить, что эта функция объектива будет выключена, когда объектив установлен на штативе, так как это может привести к неустойчивым результатам, и, как правило, не требуется. Многая современная стабилизации изображения линза (в частности, от Canon более позднего IS линза) может автоматически определить, что они являются треногой и (в результате крайне низких показаний вибрации) и отключить автоматически, чтобы предотвратить это, и любое последующее снижение качества изображения. Кроме того, система получает питание от аккумулятора, поэтому выключать его, когда не требуется продлевает заряд батареи.
Недостаток стабилизации изображения объектива на основе будет стоить. Каждый объектив требует своей собственной системы стабилизации изображения. Кроме того , не каждый объектив доступен в воображаемой стабилизированную версии. Это часто бывает для быстрых простых и широкоугольных объективов. Тем не менее, самый быстрый объектив со стабилизацией изображения является Nocticron со скоростью F / 1.2. Хотя наиболее очевидное преимущество для стабилизации изображения лежит с более длинными фокусными расстояниями, даже нормальные и широкоугольные линзы выгоды от него в условиях низких освещенности приложений.
Объектив на основе стабилизация также имеет преимущество по сравнению стабилизации в-тела. В условиях низкой освещенности или малоконтрастных ситуациях, система автоматической фокусировки (который не имеют стабилизированных датчиков) способна более точно , когда изображение идет от объектива уже стабилизировано работать. В камерах с оптическими видоискателями, изображение видно фотографом через объектив стабилизированного (в отличие от стабилизации в-тела) показывает более подробно из — за ее стабильность, и это также делает правильно кадрирование легче. Это особенно важно в случае с более длинными телеобъективов. Это преимущество не происходит на компактных системных камер , так как выходной сигнал датчика на экран или электронный видоискатель будет стабилизирована.
Датчик сдвига
Датчик захват изображения может быть перемещен таким образом, чтобы противодействовать движение камеры, технологию часто называют механическую стабилизацию изображения. Когда камера поворачивается, вызывая угловую ошибку, гироскопы кодировать информацию на привод , который перемещает датчик. Датчик перемещается , чтобы поддерживать проекцию изображения на плоскость изображения, которая является функцией фокусного расстояния используемого объектива. Современные камеры могут автоматически получать информацию о длине фокусной от современных объективов для этой камеры. Некоторые линзы могут быть переоборудованы с чипом , который обменивается данными с фокусным расстоянием. Minolta и Konica Minolta использовали технологию , называемую Anti-Shake (АС) в настоящее время на рынке как SteadyShot (SS) в альфа Sony линии и Shake Reduction (SR) в Pentax K-серии и серии Q камер, которая опирается на очень точное угловое датчик скорости для обнаружения движения камеры. Olympus представила стабилизации изображения с их E-510 D-SLR тела, используя систему , построенную на их сверхзвуковой Wave Drive. Другие производители используют ЦСП для анализа изображения на лету , а затем переместить датчик соответствующим образом . Датчик сдвига также используется в некоторых камерах по Fujifilm, Samsung, Casio Exilim и Ricoh Caplio.
Преимущество перемещения датчика изображения , вместо того , чтобы линзы, является то , что изображение может быть стабилизировано даже на линзах , сделанные без стабилизации. Это может позволить стабилизациям работать со многими иначе-нестабилизированными линзами, а также уменьшает вес и сложность линз. Кроме того, когда датчик на основе технологии стабилизации изображения улучшается, она требует замены только камеру , чтобы воспользоваться преимуществами усовершенствований, которые , как правило , гораздо дешевле , чем замена всех существующих линз , если полагаться на стабилизацию изображения объектива на основе. Некоторые реализации датчика стабилизации изображения на основе способны корректировать камеры ролл вращение, движение, которое легко возбуждается нажатием кнопки затвора. Нет объектив-система не может решить этот потенциальный источник размытия изображения. Побочным продуктом доступного «Ролл» компенсации является то , что камера может автоматически корректировать для наклонных горизонтов в оптическом диапазоне, при условии , оно оснащено электронным спиртового уровня, таких как камеры Pentax K-7 / K-5.
Одним из основных недостатков перемещения датчика самого изображения является то , что изображение , проецируемое на видоискатель не стабилизируется. Однако, это не проблема , на камерах , которые используют электронный видоискатель (EVF), так как изображение проецируется на этом видоискателе берется из самого датчика изображения. Аналогичным образом , изображение , проецируемое на систему автоматической фокусировки фазового детектирования , которая не является частью датчика изображения, если он используется, не стабилизируются.
Некоторые, но не все, камеры-тело, способные стабилизации кузова можно предварительно установить вручную в заданном фокусное расстояние. Их система стабилизации корректирует как если прилагается, что фокусное расстояние объектива, так что камера может стабилизировать старые линзы и линзы от других производителей. Это не является жизнеспособным с переменным фокусным расстоянием, потому что их фокусное расстояние изменяется. Некоторые адаптеры взаимодействуют фокусную информацию о длине от производителя одной линзы к корпусу другого производителя. Некоторые линзы, которые не сообщают их фокусное расстояния могут иметь чип добавляемый к объективу, который сообщает предварительно запрограммированные фокусное расстояние к корпусу камеры. Иногда ни один из этих методов не работает, и стабилизация изображения просто не может быть использована с такими линзами.
В-теле стабилизация изображения требует линзы, чтобы иметь больший круг выходного изображения, так как датчик перемещается во время экспозиции и, таким образом, использует большую часть изображения. По сравнению с движениями линз в оптических системах стабилизации изображения движение датчиков достаточно велики, так что эффективность ограничена максимальным диапазоном движения датчика, где типичный современный оптически стабилизированный объектив имеет большую свободу. И скорость и диапазон требуемого увеличения движения датчика с фокусным расстоянием используемого объектива, что делает сенсорные технологии сдвига менее подходит для очень длинных телеобъективов, особенно при использовании более медленные скорости затвора, так как доступный диапазон движения датчика быстро становится недостаточным, чтобы справиться с перемещением изображения увеличивается.
двойственный
Начиная с Panasonic Lumix DMC-GX8 , объявленным в июле 2015 года, а затем в Panasonic Lumix DC-GH5 , Panasonic, который ранее только оборудованная стабилизацию линзы на основе в сменной камере объектива (от Micro Four Thirds стандарта), введенный стабилизация датчика-сдвиг , который работает во взаимодействии с существующей линзы на основе системы ( «Dual IS»).
В том же время (2016 г.), Olympus также предлагает две линзу с системой стабилизации изображения , которые могут быть синхронизированы с системой стабилизации изображения встроенных датчиков изображения Олимп Micro Four Thirds камер ( „синхронизация“). С помощью этой технологии прирост 6,5 диафрагм может быть достигнут без смазанных изображений. Это ограниченно вращательное движение поверхности Земли, что дурачит акселерометры камеры. Поэтому, в зависимости от угла зрения, максимальное время экспозиции не должно превышать 1/3 секунды для длиной телефото (с эквивалентным фокусным расстоянием 35 мм 800 мм) и немного больше , чем десяти секунд для широкоугольных снимков (с 35-мм эквивалент фокусное расстояние 24 мм), если движение Земли не принимается во внимание в процессе стабилизации изображения.
В 2015 году Sony E система камеры также позволила комбинируя стабилизации изображения системы линз и камеры органов, но без синхронизации одни и те же степени свободы . В этом случае, только независимая компенсации степень на в построенной стабилизации датчика изображений активируются , чтобы поддержать стабилизацию объектива.
Цифровая стабилизация изображения
Короткое видео стабилизация изображения показывая сделано исключительно в программном обеспечении на стадии постобработкиВ режиме реального времени цифровой стабилизации изображения , которая также называется стабилизация электронного изображения (EIS), используется в некоторых видеокамерах. Этот метод перемещает электронное изображение от кадра к кадру видео, достаточно , чтобы противодействовать движению. Он использует пиксели за пределами границы видимого кадра , чтобы обеспечить буфер для движения. Этот метод уменьшает отвлекающие вибрации от видео путем сглаживания перехода от одного кадра к другому. Этот метод не влияет на шум уровня изображения, за исключением крайних границ , когда изображение экстраполировано. Он не может ничего о существующей размытости, что может привести к изображению , казалось бы , проигрышное внимание , как движение компенсируется сделать.
Некоторые до сих пор производители камер на рынок своих камер, как имеющие цифровую стабилизацию изображения, когда они на самом деле были только режим высокой чувствительности, который использует короткую выдержку время продуцирующих изображения с меньшим размытием движения, но больше шума. Это уменьшает размытие при съемке что-то, что движется, а также от дрожания камеры.
Другие теперь также используют цифровую обработку сигнала (DSP) для уменьшения размытости в кадрах, например, посредством суб-деления воздействия на несколько более коротких экспозиций в быстрой последовательности, отбрасывая размытые те, повторно совместив острые суб-экспозиций и добавление их вместе, и используя гироскоп для определения лучшего времени, чтобы принять каждый кадр.
Стабилизация фильтры
Многие видео системы нелинейное редактирования использовать стабилизационные фильтры , которые могут исправить нестабилизированное изображение путем отслеживания перемещения пикселов в изображении , и коррекции изображения, перемещая рамку. Процесс похож на цифровую стабилизацию изображения , но так как нет больше изображений для работы с фильтром либо обрежет изображение вниз , чтобы скрыть движение рамы или пытается воссоздать утраченный образ на краю через пространственную или временную экстраполяцию .
Онлайн — сервисы, в том числе YouTube компании Google, также начинают предоставлять « стабилизации видео , как шаг после обработки после того, как содержание загружается. Это имеет тот недостаток , не имеющий доступ к данным в реальном масштабе времени гироскопических, но преимущество дополнительной вычислительной мощности и способность к анализу изображений до и после конкретного кадра.
Ортогональные передачи ПЗС
Используется в астрономии, ортогонален ПЗС переноса (OTCCD) фактически перемещает изображение внутри CCD самого , пока изображение захвата, на основе анализа видимого движения ярких звезд. Это редкий пример цифровой стабилизации для неподвижных изображений. Примером этого является в предстоящем гигапикселя телескопа Pan-STARRS строится на Гавайях.
Стабилизирующий корпус камеры
Стедики системаТехника , которая не требует никаких дополнительных возможностей любой комбинации камеры тела объектива состоит из стабилизации всего тела камеры извне , а не с использованием внутреннего метода. Это достигается за счет прикрепления гироскоп к корпусу камеры, как правило , с помощью встроенного в штатив камеры крепление. Это позволяет внешний гироскоп стабилизации камеры, и , как правило , используется в фотографии с двигающимся транспортным средством, когда объектив камеры или предлагает другой тип стабилизации изображения не доступен.
Это была интегрирована в видеокамерах, позволяя датчик и объектив в сборе для перемещения вместе внутри корпуса камеры.
Другой способом стабилизации тела видео или движение камеры изображения является Steadicam системы, которая изолирует камеру от тела оператора , используя жгут и бум камеры с противовесом.
стабилизатор камеры
Стабилизатор камеры представляет собой любое устройство или объект , который внешне стабилизирует камеру. Это может относиться к Steadicam , на треноге , рука оператора камеры, или их комбинации.
В крупном плане фотографий, с помощью датчиков вращения, чтобы компенсировать изменения в камерах указывая направление становится недостаточным. Двигаясь, а не наклоняя, камера вверх / вниз или влево / вправо на доли миллиметра становится заметным, если вы пытаетесь решить детали миллиметрового размера на объекте. Линейные акселерометры в камере, в сочетании с информацией, такими как фокусное расстояние объектива и сфокусированным расстояние, могут питать вторичную коррекцию в привод, который перемещает датчик или оптик, чтобы компенсировать линейное, а также вращательное дрожание.
В биологических глазах
У многих животных, включая человека, то внутреннее ухо функционирует в качестве биологического аналога с акселерометром в системах стабилизации изображения камеры, чтобы стабилизировать изображение, перемещая глаза . При обнаружении вращения головки, ингибирующий сигнал посылаются к экстраокулярным мышцам на одной стороне и возбуждающий сигнал к мышцам на другой стороне. Результат является компенсаторным движением глаз. Обычно движения глаз отстают от движений головы менее чем на 10 мс.
Смотрите также
Рекомендации
ru.qwertyu.wiki