Глубина цвета 24 бита что это: Какой объём видеопамяти необходимый для изображения глубиной цвета 24 бита а разрешающая способность дисплея -…

Постфильтр

«22-битный цвет»… «постфильтр»… Эти лозунги от компании 3dfx нам известны уже давно. Ещё на заре аппаратной 3D-эры революционный Voodoo Graphics обладал оптимизированным 16-битным цветом. Но как, где и почему он оптимизирован, было неизвестно. Развитие шло, и только при появлении игр с реально заметной разницей между 16-битным и 32-битным цветом некоторые пользователи стали замечать, что картинка, которую дает Voodoo3, у них на мониторе и тот же скриншот различаются. Тогда-то и вспомнили и про 22-бита, и про постфильтр. Мы постараемся разобраться, как реализуется 22-битный цвет, зачем он нужен, где находится постфильтр и насколько эффективен оптимизированный 16-битный цвет, в сравнении с обычным 16-битным цветом и 32-битным цветом. Самый популярный видеочип со встроенным постфильтром — естественно Voodoo3. Его и примем за объект рассмотрения. Хотя постфильтр — это некоторая технология увеличения качества графики, и единственная связь этой технологии и фирмы 3dfx заключается в том, что именно эта фирма впервые реализовала постфильтр в своих чипах. Технология является открытой, и не исключено, что ещё какая-нибудь фирма разработает видеочип со встроенным постфильтром.

В последнее время постфильтр несколько потерял свою актуальность, особенно в свете того, что новые карты 3dfx — Voodoo4 и Voodoo5 поддерживают 32-битный цвет. Но у них же и остался 16-битный цвет, а в нем постфильтр опять-таки реализован. С другой стороны, в то время как 3dfx использует оптимизированный 16-битный цвет, ATi, похоже, вообще бросила 16-битный цвет и сосредоточилось на 32-битном. А та же nVidia держится в середине, и «дает» чистый 16-битный цвет и чистый 32-битный. Кто, из них прав, не нам судить. А мы приступим к рассмотрению постфильтра.

Глубина цвета

16-бит, 24-бита, 32-бита, True Color, High Color… Что всё это значит? Те, кто знает ответ на этот вопрос, могут перейти к следующей части статьи. Для всех остальных мы объясним, «кто есть кто».

Итак, эра компьютерной графики началась с монохромного монитора. Там всё было просто. Один бит на цвет. Единица — белая точка, ноль — черная. Один байт — восемь пикселей (вот экономия-то где!). Следующий шаг — цветные мониторы. Но каким образом — вспомнить страшно. Два бита на пиксель, или четыре цвета. Дальше уже легче. 4 бита на цвет, итого 16-цветовой режим. После — 256 цветов (один байт — одна точка). И наконец — 16-бит, впоследствии названный High Color. Но бит 16, а цветовых каналов 3. 16 на 3 не делится. А 15 на 3 делится. Первые реализации High Color имели следующую организацию цвета пикселя:

Младший (нулевой) бит не использовался. А на каждый цветовой канал приходилось по пять бит. Используя три цветовых канала (RGB) можно получить любой цвет (например, желтый цвет получается из соотношения 1:1:0, белый — 1:1:1, а черный 0:0:0).

Но пересылка и хранение цвета пикселя происходило по 2 байта, а это 16 бит, а не 15. Вскоре, нашли применение всем 16 битам. И организация цвета пикселя сменилась:

Получилось по 5 бит на красный и синий цветовые каналы, и 6 бит на зеленый. Таким образом, наиболее точно представляется зеленый цветовой канал. Почему именно зеленый? Да потому, что человеческий глаз наиболее чувствителен к перепадам зеленого цвета. Эта модель цвета пикселя High Color используется до сих пор.

Но High Color недостаточно точная система представления цвета. Человек видит около 10 миллионов цветовых оттенков, а High Color режимы передают только до 65536 цветов. Для отображения 10 миллионов цветов используются True Color режимы (отсюда и название — реальный цвет). True Color режимы для кодировки цвета используют 24-бита — по байту на цветовой канал. Это позволяет закодировать до 16 777 216 цветов, что более чем в полтора раза перекрывает естественный предел в 10 миллионов. Некоторые карты имеют 24-битное (3 байта) представление True Color цветов. Но хранить, искать и передавать информацию по три байта достаточно неудобно (и аппаратно, и, в первую очередь, программно). Деление на три трудоемко, а делить на число, образованное степенью двойки, легко. Поэтому подавляющее большинство видеокарт имеет 32-битное представление цвета. Не стоит думать, что оно более точное, чем 24-битное. Так как 24-бита хватает с избытком, то в 32-битном представлении так же на каждый цветовой канал выделяется по одному байту, а младший байт (разряды 0-7) не используется, или хранит системную или пользовательскую информацию, но реально в отображении цветов не участвует.

Такие же цветовые режимы используются и в 3D-графике. Так конечное изображение (2D) формируется либо в 16-битном, либо в 32-битном цвете. В процессе рендеринга участвуют текстуры, которые, по сути дела, являются 2D-изображениями. Обычно видеоакселераторы воспринимают 16-битные или 32-битные текстуры. Формат хранения цвета пикселя каждой текстуры совпадает с рассмотренными форматами. В 32-битной текстуре младший байт (разряды 0-7) может содержать информацию о прозрачности данной точки текстуры, образуя таким образом буфер шаблонов. В 16-битной текстуре буфер шаблонов может быть однобитным, и тогда на цветовые каналы остается 15 бит. Если недостаточно однобитного буфера шаблонов, то используют схему 4 бита на красный, 4 бита на зеленый, 4 бита на синий и 4 бита на уровень прозрачности. Конечно же, такого качества недостаточно и поэтому с текстурами, содержащими буфер шаблонов рекомендуется работать в 32-битном цвете.

Естественно, 16-битный и 32-битный режимы взаимозаменяемы. Только 16-битный цвет дает более низкое качество. 16-битную картинку без потери качества можно отобразить в 32-битном режиме. Для этого каждому цветовому каналу 32-битного цвета ассоциируется цветовой канал 16-битного цвета, который имеет меньшую разрядность. Каждый цветовой канал 16-битного записывается в верхнюю часть цветового канала 32-битного цвета.

Естественно, что процесс преобразования 32-битной картинки в 16-битную происходит с потерей качества. Так биты 27-31 из формата 32-бита записываются в биты 11-15 16-битной картинки. Далее схема перевода аналогична. Таким образом, теряются младшие биты каждого цветового канала и дискретность зеленого канала возрастает в четыре раза, а красного и синего канала возрастает в восемь раз.

Какой глубины цвета достаточно?

Для 2D изображения — все просто. High Color — приемлемое качество, True Color — идеальное. 2D изображение поступает на экран уже в готовом виде, а 3D рендерится в реальном времени. Когда 3D картинка рендерится в один-два прохода, то в High Color мы получаем такое же приемлемое качество, как и в 2D. Качество и сложность 3D-игр возрастает, появляется множество эффектов в виде дыма, тумана, облаков, огня, лучей света и т.п. Такие эффекты обычно накладываются в несколько проходов через альфа-канал на непрозрачные объекты.

Допустим, что в результате рендеринга на части экрана создался непрозрачный объект, например стена.

Теперь, пусть на этот сегмент будут наложены ещё две прозрачные «фигуры» (например освещение и дым). В результате чего должно получиться следующее:

Однако, генерация разных объектов (типа стена и дым) в пределах одного сегмента происходит за несколько проходов. В нашем случае это генерация в два прохода. В результате чего мы получаем следующую картину:

В результате чего мы получаем близкое к идеальному изображение, но нетрудно заметить отличие.

И такое различие заметно уже при двухпроходном рендеринге. А что же будет при четырехпроходном? Но самое страшное не в этом. При смешивании цветов часто получаются нецелые значения (например, два цвета 6 и 7 при смешивании с альфа-коэффициентом 0.5 дают результат 6.5). Дело в том, что в рассмотренных нами примерах мы постоянно округляли полученные значения до ближайшего целого. Большинство же видеокарт в алгоритме смешивания не используют избыточную логику, вследствие чего округления не происходит и результат получается удручающий:

Сравним все три полученные результаты — однопроходный с округлением (идеальный), двухпроходный с округлением и двухпроходный без округления:

Как видим, наиболее отличный от идеала последний. В первых двух случаях границы между цветами максимально плавные, тогда как в последнем такое правило нарушается и уже сам по себе неидеальный 16-битный цвет выдает ещё более грубую картинку. Большинство видеокарт в 16-битном режиме не используют округление при смешивании, однако для повышения качества используют технологию дизеринга (а некоторые даже не используют дизеринг).

В 32-битном цвете ситуация немного другая. Некоторые видеокарты последних поколений используют избыточную логику для округления результата при смешивании цветов и качество графики при этом получается очень высоким. Другие видеокарты используют все 32 бита, где, как и в обычной схеме, в старших 24 битах хранятся реальные цвета, а биты избыточности (дробные части цветов) хранятся в младших 8 битах. Такая схема наиболее предпочтительна, но, к сожалению, просто мизерная часть современных видеоакселераторов поддерживают данную схему. И, наконец, некоторые видеокарты (их, слава богу, меньшинство) используют схему смешивания без округления с дизерингом (как и в 16-битном цвете). Есть ещё несколько схем реализации смешивания цветов, но я лично не встречал видеокарты, реализующие подобные алгоритмы, поэтому рассматривать их не будем.

В итоге, уже при двухпроходном рендеринге мы наблюдаем некоторое отклонение от нормы как в 16-битном, так и 32-битном цвете. Современные программы создают сцену за относительно малое число проходов, и для нас 32-битный цвет кажется идеальным. Но, с усложнением сцен мы сможем увидеть недостатки и в 32-битном цвете. А такое будущее уже не за горами, — уже в DOOM-3 планируется рендеринг с наложением 6-8 текстур на треугольник, и это без учета дополнительных эффектов типа блики, дым, огонь, облака и им подобных. И при реализации трилинейной фильтрации используются два текстурных модуля акселератора, а это значит, что при рендеринге такого «сложного» треугольника придется накладывать уже 12-16 текстур, а ни один современный акселератор в один проход этого не сделает. Сам же Джон Кармак, постоянно работая с главными разработчиками видеочипов, предлагает в будущих проектах использовать 64-битный цвет. Это поможет помимо 8 бит реального цвета на цветовой канал хранить ещё и 8 бит дробной части для каждого цветового канала, тем самым обзавестись идеальным качеством. 64-битный цвет дает огромный запас по избыточности, что делает его высококачественным ещё как минимум на шесть лет. Но, к сожалению, ни один современный непрофессиональный видеочип не поддерживает 64-битного цвета, и в ближайшем будущем такого видеочипа не ожидается.

Как изображение из видеопамяти попадает на экран

Те, кто знает ответ на этот вопрос, могут переходить к чтению следующей части. Остальных же прошу слушать внимательнее, потому что мы все ближе и ближе подходим к сущности работы постфильтра.

Итак, идея в том, что обычный CRT-монитор получает аналоговые сигналы, а в памяти видеоадаптера информация хранится в цифровом виде. Front Buffer должен постоянно и непрерывно показываться на мониторе. А его показом занимается RAMDAC. А точнее, последовательным преобразованием цифрового значения каждой его точки в аналоговый сигнал. Обычный RAMDAC состоит из двух основных блоков. Первый — блок выборки из памяти. Он выбирает из участка памяти, где храниться Front Buffer, последовательно цвета всех пикселей (для упрощения не будем рассматривать 1-, 2-, 4- и 8-битные цветовые режимы). Обычно он же временно сохраняет эти данные в кэше, что ускоряет процесс обращения к памяти. Главная задача этого блока постоянно предоставлять информацию о цветах следующего пикселя в порядке следования луча по экрану монитора — слева направо, сверху вниз. Следующий блок — это DAC (по-русски — ЦАП). Он синхронизируется с монитором, и каждый такт выводит комбинацию аналоговых сигналов, соответствующих цвету точки, полученному от предыдущего блока. Казалось бы, все просто. Но, как мы помним, видеокарта может работать в разных цветовых режимах. Поэтому большинство видеоакселераторов содержат в блоке DAC несколько наборов логики. Чаще всего это DAC8, DAC15, DAC16, DAC24 и DAC32 (DAC8 отвечает за палитезированные режимы и поэтому работает как с 256-цветовым режимом, так и с 16-, 4- и 1-цветовым). Некоторые видеокарты могут не содержать некоторые наборы (например, DAC15 или DAC24).

Вот и всё. Вот так работает RAMDAC, и так часть видеопамяти под названием Front Buffer попадает к нам на экран.

Дизеринг

Теперь перейдем к технологии дизеринга (dithering). Так как она нашла свое основное применение именно в 16-битном цвете, то его и рассмотрим. Каждый текстурный конвейер в видеочипах, работающих с High Color режимом, имеет разрядность 24 бита, т.е. по 8 бит на цветовой канал. Такую же разрядность имеет и модуль смешивания цветов. Эффективная же их разрядность 22-бита (знакомо?). Это значит, что какую бы разрядность не имели эти модули, на их выходе реально используются только 22 бита. То есть 7 бит на красную, 8 бит на зеленую и 7 бит на синюю составляющие. Но, как мы помним, мы сейчас генерируем 16-битную картинку, а это значит, что 6 бит у нас лишние. Их можно просто отбросить. Если сделать это, то есть при пересылке не пересылать два младших бита от каждой цветовой составляющей, то мы получим 16-битную картинку без дизеринга. А выглядит это так:

Бяка, одним словом. Слишком явные границы между соседними цветами. А ведь смешивание происходит с более высокой точностью, и именно эту точность мы «отбрасываем» вместе с шестью «лишними» битами. А ведь их можно учитывать. И делается это очень просто. Рассмотрим пример для красной составляющей (как мы видим, наша картинка именно красного цвета, а на самом деле это кусок неба из Quake3:Arena). После генерации реального цвета точки на части выходов блока смешивания появляется 8 бит определяющие красный цвет. Из них мы точно берем старшие шесть бит. Например, эти шесть бит определяют значение 27. Но нам так же интересны и оставшиеся два бита. Если там ноль, значит мы имеем дело с реальным цветом 27, его и ставим. Если два младших бита равны единице, то реальный цвет 27.25, т.е. на четверть больше. И тогда, если точка ставиться на нечетную координату экрана X и четную координату экрана Y, то на это место ставится цвет на единицу больший по интенсивности, в нашем случае 28. Таким образом, на поле из цвета 27 каждая четвертая точка имеет значение 28, т.е. среднее значение цвета поля получается 27.25, что нам и нужно. Если два младших бита, равны 10b (двум), то реальный цвет точки 27. 5. Таким образом, уже каждая вторая точка должна иметь значение на единицу больше. Условие усложняется. Если точка ставится на нечетную координату экрана X и четную координату экрана Y, или на четную координату экрана X и нечетную координату экрана Y, то на это место ставится цвет на единицу больший по интенсивности (у нас 28). Аналогично строится условие, в случае, когда младшие два бита равны 11b (тройке). Если точка ставится на нечетную координату экрана X и четную координату экрана Y, или на нечетную координату экрана X и четную координату экрана Y, или на четную координату экрана X и четную координату экрана Y, то на это место ставится цвет на единицу больший по интенсивности. В этом случае на поле из цвета 28 остается каждая четвертая точка 27. И наша картинка (часть неба Quake3) будет выглядеть уже иначе:

Это та же картинка, но уже с дизерингом. Эта картинка ещё и увеличена, для того чтобы была отчетливее видна сеточка дизеринга. В реальном масштабе сеточка заметна ещё меньше, так как глаз видит уже достаточно однородное поле. Отодвиньтесь дальше и вы сами увидите это.

Алгоритм дизеринга можно представить и графически. Таблица ниже показывает, как изменяются четыре соседних точки в зависимости от двух младших битов. В позициях точек указано приращение к базовому цвету, записанному в старших битах.

Такая схема дизеринга называется Ordered. Именно её и использует Voodoo3. Существуют и другие способы дизеринга (другие маски, алгоритмы), но именно Ordered наиболее эффективен, если в видеочипе встроен постфильтр.

Постфильтр

Посмотрим ещё раз на небо Quake3, а точнее на его часть.

Мы видим, как работал дизеринг, и можем с большой уверенностью сказать, какие цвета на самом деле были на выходе блока смешивания, и со стопроцентной вероятностью сказать какие цвета «увидит» наш глаз (не забываем о том, что глаз смешивает соседние невыделенные цвета). Если мы можем определить, какие цвета должны стоять на месте каждого поля из точек, почему это не может видеокарта? Так заставим же её это сделать. Блок DAC16 модуля RAMDAC читает именно такую картинку. Естественно в его кэш поступает не вся картинка сразу, а только несколько горизонтальных линий. Минимальное количество линий две. Как известно, Voodoo Graphics использует маску постфильтра 1×4. Модели 3dfx, начиная с Voodoo2 и выше, используют маску 2×2. DAC16, используя дополнительную логику, сравнивает соседние четыре пикселя, и увидев знакомую «шахматку» смешивает эти цвета. Естественно смешивается не любые четыре соседних цвета, а только те, которые могли создаться дизерингом. То есть дополнительная логика ищет цвета отличающиеся друг от друга на малое значение. Найдя такие, она проверяет их на соответствие таблице Ordered. Зачем? Ну, представим себе, что логика нашла четыре точки, три из которых имеют одинаковый цвет, а один чуть светлее. Естественно таких комбинаций может быть четыре. Но только одна из них могла быть вызвана постфильтром. Эта более светлая точка должна стоять на координатах с нечетным значением X и четным значением Y. Если условия четности выполняются, то логика считает, что это поле продукт дизеринга и смешивает четыре цвета с повышенной точностью. Таким образом, возможно восстановление двух потерянных бит на выходе блока смешивания и восстановления их с точностью в 22 бита. Дополнительная логика DAC16 и называется постфильтром. Постфильтр производит обработку изображения «на лету» и поэтому не влияет на производительность системы. Для повышения качества постфильтрация производится для каждого цветового канала независимо, а не для всего цвета пикселя. Вероятность смешивания цветов, полученных не дизерингом, крайне мала (на практике меньше одного процента), и даже если смешивание таких цветов произойдет — ничего в этом страшного нет, так как наш глаз так и так был бы обманут и самостоятельно смешал бы соседние цвета. Таким образом, постфильтр — это аппаратно-программный комплекс повышения визуализации графического изображения.

В общих словах схема работы такая. Внутренний рендеринг видеокарты Voodoo3 происходит с 22-битной точностью цвета. При этом в память видеокарты (во Frame Buffer) записывается 16-битная отрендеренная картинка с использованием схемы дизеринга на основе признаков четности координат. После завершения рендеринга RAMDAC читает готовое изображение в кэш и на основе признаков ближних цветов для каждого цветового канала и признаков четности координат восстанавливает 22-битный цвет. На выходе RAMDAC получается набор аналоговых сигналов, которые поступают на монитор. Всего комбинаций аналоговых сигналов — 4194304 (произведенные от 22-битов). Это более чем в два раза меньше, чем способен различить человеческий глаз, но гораздо больше, чем реальный 16-битный цвет (в 64 раза точнее).

Уровень (глубина) постфильтрации

Все просто, не так ли? С учетом признаков четности смешиваются мало отличающиеся цвета с маской 2×2. А что значит мало отличающиеся? Для конечной картинки созданной без наложения нескольких текстур на один участок экрана или с наложением в один проход — все понятно. Разница между отдельными цветовыми каналами в пределах одного поля точек, созданных в результате дизеринга, будет равно единице (см. таблицу схемы Ordered выше). А если наложение происходит за несколько проходов? При использовании буфера шаблонов на каждый цветовой канал текстуры приходится по 4 бита, а это значит, что дискретность (а следовательно и разница между «соседними» цветами) возрастет в два/четыре раза. Разницу (глубину) между цветами, которые постфильтр должен считать соседними, устанавливают драйверами. Это значение называется уровнем или глубиной постфильтра. Глубина постфильтра Voodoo3 равна восьми. Кроме того, на создавшийся регион с некоторой сеткой дизеринга (например, светлые единичные точки) может быть наложено изображение, имеющее другую сетку (например, темные единичные точки). Поэтому при более глубоком уровне фильтрации обычной таблицы Ordered недостаточно и необходимо создать новую с производными сетками, получившихся в результате наложения различных и одинаковых сеток, а так же в результате более грубого представления прозрачных текстур.

Таблица сеток постфильтрации с глубиной восемь очень большая, и для того, чтобы мы просто имели представление о полном наборе сеток, ниже приводится такой для постфильтра с глубиной фильтрации равной трем.

При глубине постфильтра равной трем — вот все комбинации четырех соседних пикселей, которые могут создаться в результате дизеринга однопроходного и мультипроходного наложения. Все остальные комбинации создаются не дизерингом. Аналогично составляется таблица соответствия для постфильтрации с другим уровнем (например, для уровня восемь). Алгоритм поиска и сравнения маски упрощается тем, что из четырех соседних цветов, находящейся в маске слева снизу — самый яркий, а справа снизу — самый темный. Как уже говорилось, сравнение происходит для каждого цветового канала независимо, что положительно сказывается на качестве общей картинки. Естественно, чем выше уровень фильтрации, тем с большей глубиной наложения текстур она происходит. Многие замечали в 16-битном цвете при наложении на одно и то же место нескольких полупрозрачных текстур, появляющуюся сеточку дизеринга. Чем больше произошло наложений, тем заметнее сеточка (увеличивается разность между соседними цветами). Например, дым от ракеты в Quake3. Если Voodoo3 производит постфильтрацию с уровнем восемь, то такой постфильтр уберет сеточку на месте наложения максимум восьми текстур. Однако, чем выше уровень фильтрации, тем выше вероятность смешивания соседних цветов, получившихся не в результате дизеринга. Экспериментально была найдена оптимальная глубина постфильтра. Как ни странно, она равна восьми. При уменьшении уровня фильтрации проявляется сеточка на эффектах. Уже при уровне равным шести дым от ракет в Quake3 был явно решетчатым. При увеличении уровня — появляются артефакты, указывающие на смешивание цветов, которые не должны смешиваться и общая четкость картинки резко ухудшается. Дальнейшее рассмотрение работы постфильтра будем проводить для глубины равной восьми.

Полезность постфильтра

Итак, с теорией разобрались, а как же дела обстоят на практике? Посмотрим на следующие скриншоты. Верхнее изображение — чистый 16-битный цвет, а нижнее с постфильтрацией.

Посмотрим на наиболее интересные фрагменты изображения (начиная справа и по часовой стрелке), сравнивая изображения без постфильтрации (справа) и прошедшие через постфильтр (слева).

    

Здесь можно отметить отсутствие решетки на небе и на рамке меню. Это же привело к увеличению размеров пикселей. Но в целом картинка смотрится несколько лучше, так как помимо увеличения размера пикселей, разница между границами цветов уменьшилась, так как фактически количество цветов увеличилось в четыре раза. Картинке стала присуща плавность границ между соседними цветами, несмотря на укрупнение пикселей на этих границах. Границы между соседними объектами не изменились. Рамка меню нисколько не изменила свою форму. Сильно заметная сетка на прозрачной части меню была полностью убрана, что существенно отразилось на увеличении качества.

    

Обратим внимание на цифру «9». Избавившись от решетки, покрывающей девятку, постфильтр не сумел избавиться от «полосатости» цифры. Визуально качество практически не изменилось, а возможно стало немного выше. Полностью убрать решетку со шлема не удалось. Однако даже обработка, прошедшая на части шлема, сделала изображение более плавным, в частности исчезли выбивающиеся из общей картины единичные пиксели. На заднем фоне ворота телепорта (справа) имеют определенный рисунок, который ничуть не пострадал в результате фильтрации, опять же приобретая определенную плавность цветов. Левая часть заднего фона имеет более сложный рисунок, и с ним постфильтр уже не справился, хотя чисто субъективно отфильтрованная картинка мне нравится больше.

    

А вот тут картина неоднозначная. Да, решетка убрана, но частично. И эта частичность проявляется в виде отдельных пикселей другого цвета на равномерном фоне. Да и рамка меню несколько пострадала. Границы формы стали немного угловаты. Но, фрагмент увеличен, и на картинке «в натуре» эти погрешности особо не заметны. К ним нужно присматриваться, чтобы их найти. Такие явные артефакты проявляются только на полупрозрачных объектах, полученных многократным наложением, а эти объекты в современных программах создают преимущественно динамические эффекты. Поэтому поймать артефакты очень тяжело. Так, (при снятой паузе) телепорт переливался множеством цветов, и в целом заметить ошибки постфильтрации просто не успеваешь.

    

От этой картинки достаточно приятные впечатления, однако опять по левой кромке рамки меню несколько «оквадратилась» форма. Опять остались единичные пиксели, но они малозаметны. А ворота, приобретя плавность цветов, унаследовали полосатость, за счет того же укрупнения пикселей. Но, опять же на не увеличенной полной картинке все выглядит достаточно мило.

Рассмотрим ещё несколько фрагментов. На этот раз не увеличенных, чтобы составить впечатление от реальной картинки (всегда верхний скриншот это без постфильтра, а нижний с постфильтром).

Трудно найти отличия, однако то, что снизу мне нравиться больше.

Задний план, а так же реализация дыма и вспышек плазмы с постфильтрации выглядят более эффектно.

А вот этот портал постфильтру обработать удалось несколько хуже, чем предыдущий, однако визуальное качество картинки всё же повысилось.

Здесь со своей задачей постфильтр справился просто блестяще.

Существует мнение, что постфильтр приводит к некоторому размытию картинки. Для того чтобы проверить этот слух, рассмотрим «замыленную» часть картинки прошедшую постфильтрацию (нижняя), и не прошедшую (верхняя).

Как видим, этот артефакт присутствует, однако, на не отфильтрованном фрагменте разглядеть дополнительные детали все же не удается. То есть постфильтр не причастен к факту размытия картинки. Тем более, что на расположенной чуть дальше нечеткого пола стены в точности сохранены все детали. То, что постфильтр замыливает изображение — оказалось не больше чем очередным мифом.

Спрашивается, зачем всё это нужно? Не лучше ли использовать настоящий 32-битный цвет? На самом деле не всегда лучше. Как известно, главная болезнь современных видеокарт — малая полоса пропускания шины данных. А для 16-битного цвета необходима полоса в два раза уже, чем для 32-битного. Таким образом, там, где видеокарта в 32-битном цвете уже не справляется (а такое ПО уже существует для самых мощных современных ускорителей) её можно перевести в 16-битный цвет. И приятно, если в этом режиме работает постфильтр, так как визуально качество картинки несколько увеличивается.

Однако я не могу не удержаться и не продемонстрировать насколько важен 32-битный цвет в серьезных сценах.

    
nVIDIA RivaTNT2 16-bit          3dfx Voodoo3 16-bit


nVIDIA RivaTNT2 32-bit

Действительно, за 32-битным цветом будущее. Но, возникает логичный вопрос, почему бы не использовать постфильтр и в 32-битном цвете. Ответ прост. Там он бесполезен. Не забываем, что постфильтр увеличивает количество цветов с 16-бит до 22-бит. Следовательно, в True Color режимах он будет увеличивать количество цветов с 24-бит до 30-бит, и даже если он будет включен, то человеческий глаз просто не увидит разницы.

Та же 3dfx сейчас увлеклась 32-битным цветом и перестала оптимизировать 16-битный цвет, а совершенствоваться ещё есть куда. Так, можно использовать другие маски (не Ordered), увеличить размер маски (хотя бы до 4×4, правда при этом придется существенно усложнить алгоритм фильтрации) и многое другое. Но, как говорилось, за 32-битным цветом будущее, и так как 16-битный цвет у 3dfx уже оптимизирован, им теперь со спокойной душой можно заняться 32-битным цветом. Очень жаль, что другие компании так и не обратили внимания на постфильтр в 16-битном режиме, ведь при минимуме затрат это может привести к существенному увеличению качества 16-битной графики. Ведь процесс перехода к эре True Color игр будет проходит плавно и ещё достаточно долгое время. Для тех кому постфильтр мешает, можно просто отключить его в драйверах. Драйверами теоретически можно и изменять глубину фильтрации, однако 3dfx не включила эту опцию в драйверах (может и к лучшему).

Возникает последний вопрос. Есть ли альтернатива постфильтру? Есть, и она уже существует. Это FSAA (антиалиазинг). При правильной реализации, конечно. FSAA может ещё много на что повлиять. Это избавление от постфильтра, алиазинга, бесплатная анизотропная фильтрация и многое другое. Пока же FSAA не бесплатен, можно довольствоваться постфильтром. Хотя все же будущее за FSAA. Но это уже совсем другая история…

Что такое глубина цвета?

Главная » Цифровая техника

Цифровая техника

На чтение 2 мин Просмотров 4 Опубликовано

Если вы задумывались о покупке экрана компьютера или даже нового телевизора, вы наверняка уже сталкивались с понятием глубины цвета. Многие производители мониторов и телевизоров рекламируют определенные характеристики глубины цвета. О том, что такое глубина цвета, вы узнаете из этой статьи.

Глубина цвета указывает, сколько различных оттенков цвета или серого может быть отображено на одном цветовом канале пикселя, то есть в точке кадра монитора. Таким образом, он обозначает диапазон градаций цвета и яркости изображения.

4 = 16 градаций. При 8-битной глубине цвета это уже 256 градаций, при 10-битной — 1024 градации, что соответствует каждой градации цветового канала. Для бесцветных градиентов от черного к белому требуется глубина цвета не менее 8 бит, чтобы можно было плавно отображать различные оттенки серого.

Для наглядности см. Здесь некоторые значения глубины цвета в битах и связанные с ними возможные цвета:

  • 1 бит = 2 цвета
  • 2 бита = 4 цвета
  • 4 бита = 16 цветов
  • 8 бит = 256 цветов
  • 16 бит = 65 536 цветов
  • 24 бита ~ 16,78 миллиона цветов
  • 32 бита ~ 4,3 миллиарда цветов
  • 48 бит ~ 281,5 триллиона цветов
  • В пикселе обычно располагаются так называемые цветовые каналы RGB.

Цветовые каналы отображают красный, синий и зеленый цвета. Глубина цвета 8 бит, то есть 256 цветов на канал, дает количество цветовых градаций (28)3 = 16 777 216 (около 16,8 миллионов) теоретически возможных цветов, которые может отображать экран, в так называемом цветовом пространстве RGB, которое является результатом глубины цвета 8 бит, то есть 256 цветов на канал.

Какая глубина цвета нужна моему экрану?

Большинство имеющихся в продаже мониторов отображают 8 бит на цветовой канал. Этого вполне достаточно для отображения повседневного контента, такого как фильмы, фотографии и офисные приложения. Только в профессиональной фотографии и в медицинских приложениях требуется глубина цвета 16 бит для точного отображения соответствующего контента.

Некоторые современные экраны UHD, но также и модели с более низким разрешением, способны отображать цвета в 10 битах. Затем это обеспечивает еще более реалистичную цветопередачу. Независимо от того, достаточно ли 8-битной глубины цвета или вам нужна лучшая цветопередача, выбор варианта использования всегда остается за зрителем.

По этой причине, если возможно, вам следует сравнить устройства с разной глубиной цвета в специализированном магазине, чтобы принять такое решение.

Источники


http://www.heise.de/tipps-tricks/Was-ist-Farbtiefe-6147767.html

( Пока оценок нет )

В чем разница между 24-битным и 32-битным цветом на дисплеях?

В более новых ОС это не отображается, но я помню, как запутался в этом в Windows XP, где у вас была опция для 24-битного и 32-битного цвета. 32-битный цвет обычно включает альфа-канал, но мы еще не разработали прозрачные дисплеи, которые могут отображать черный цвет, так зачем же нужны дополнительные 8 байт?

  • дисплей
  • цветов

Сам экран может быть не «прозрачным», но эффекты рабочего стола, безусловно, могут быть и есть.

24-битная версия — это в основном рабочий стол или экран, который не поддерживает какие-либо эффекты прозрачности. 32-разрядная версия позволяет программному обеспечению и оборудованию графической карты отображать в окне или области то, что находится позади.

Windows часто использует это с эффектом «стекла». В Windows 11 и 10 есть такие области, как панель задач, где альфа-канал используется для определения того, какие пиксели являются прозрачными, и , насколько они прозрачны.

Видеокарта использует альфа-канал для компоновки и слияния изображений, а также для определения того, видны ли объекты, находящиеся за другими объектами, или нет. На дисплее его нет.

Из Википедии: Разрешение DisplayPort и ограничения частоты обновления (выделено мной)

8 дополнительных битов предназначены для информации альфа-канала, которая присутствует только в программном обеспечении

. На этапе передачи эта информация уже была включена в основные цветовые каналы, поэтому фактические видеоданные , передаваемые по кабелю, содержат только 24 бита на пиксель .

В качестве наглядного примера в Windows 7 для этого использовался альфа-канал:

Обратите внимание, что фоновое изображение рабочего стола можно увидеть через меню «Пуск». Без альфа-канала вы получаете что-то похожее на это, где меню «Пуск» имеет сплошной цвет, и вы не можете видеть фоновое изображение рабочего стола через него:

2

Выравнивание данных — 32-битные значения являются естественным размером для используемых сегодня ЦП; если каждый пиксель представляет собой 32-битное значение, его можно легко прочитать или записать в одной инструкции, тогда как, если вы упаковываете его в 24 бита, вам может потребоваться битовый сдвиг в правильное положение или даже обработка как два или три отдельные значения (например, три 8-битных байта), потому что нет инструкции для записи 24-битного значения сразу.

Учтите, что 24-битное с точки зрения физического отображения на самом деле 32-битное с отброшенными 8 битами. См. Википедию — Глубина цвета

В наши дни вы на самом деле склонны называть их 8-битными дисплеями, поскольку они используют 8 бит на канал.
Новые экраны с более высокой битовой глубиной называются 10-битными дисплеями.
Подробнее см. в этой статье — 8-бит, 10-бит, что все это значит для ваших видео?

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя адрес электронной почты и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

30-битных и 36-битных сканеров по сравнению с 24-битными

30-битные и 36-битные по сравнению с 24-битными сканерами
Будут ли 30-битные и 36-битные сканеры давать более качественные отсканированные изображения?

Увеличение разрядности может позволить сканеру захватывать цвета с более чем восемь бит на канал и преобразовать его в восемь бит для вывода в файл или программу приложения изображения. Вместе с хорошим динамическим диапазоном, эта обработка с увеличенной битовой глубиной также может улучшить возможность получения детали из более темных областей изображения.

Битовая глубина определяет точность тонального вывода сканера. 24-битный сканер имеет восемь бит на канал (красный, зеленый и синий). и, как правило, восемь бит для его канала шкалы серого. С восемью битами на канал аналоговый сигнал напряжения ПЗС от пикселя изображения можно преобразовать только в одно из 256 значений, от 0 для самого темного до 255 для самого светлого, как показано верхней строкой входных значений на графике слева.

30-битный сканер может создавать 10-битные значения данных на канал. Это означает, что аналог ПЗС входные значения для каждого пикселя в канале могут быть преобразованы в более точные степень детализации значений: одно из 1024 (от 0 самых темных до 1023 самых светлых), показано нижней строкой входных значений на графике слева. Это обеспечивает в четыре раза больше цифровых входных значений с ПЗС-матриц. значения, доступные для 24-битного сканера. 36-битный сканер обеспечит еще большую точность. с ассортиментом 4096 входных значений на канал.

Изображение в градациях серого предоставляется в одном канале, который обычно тот же диапазон входных значений, что и для каждого из цветовых каналов, поэтому в спецификациях сканера будет указано 24-битный цвет 8-битный серый, 30-битный цвет 10-битный серый, или 36-битный цвет 12-битный серый. Описанные здесь концепции применимы индивидуально к каждому из три канала для цветных сканов, к их составному представлению в «главный канал» RGB и в один канал шкалы серого.

Даже с увеличенной разрядностью входного сигнала, большинство сканеров обеспечивают вывод только 24 бита — восемь бит на канал — в файл или программное обеспечение для редактирования изображений. Так чем же полезны более восьми сканируемых битов на канал, когда сканер поставит только восемь? Битовая глубина сканирования больше, чем представленный на выходе, может помочь получить лучшую детализацию в теневых областях когда некоторые тональные сдвиги сделаны после аналого-цифрового преобразования. Такие тональные сдвиги делаются для компенсации визуальной нелинейности и обычно вводятся с помощью гамма-коррекции, регулировка средней точки гистограммы сканирования, а также от некоторых других настройки в программном обеспечении драйвера сканера.

Карта сканера цифровых входных данных от его ПЗС до цифровых выходные данные, отправленные в приложение или файл обычно не является прямолинейной функцией из-за эти корректировки, которые чаще всего оказывают эффект преобразования степенной функции кривая, которая наиболее быстро растет в диапазоне более низких входных значений.

Например, показанная выше карта ввода-вывода для диапазона ввода 0-255 (восьмибитный канал) сопоставит вход 63 с выходом 127. Это означает, что существует меньший диапазон входных значений для распространяться среди большего числа выходных значений в этом темном диапазоне. Для 10-битного канала диапазон составляет 0–1023, а входное значение это соответствует 127 «половине» в выходных значениях теперь 255 в диапазоне ввода от 0 до 1023. Это было 63 в диапазоне ввода от 0 до 255. Таким образом, может быть более мелкие входные данные из более темной области изображения — больше входных значений, чем выходных значений, что может дать сканеру функция сопоставления вывода более подробная информация для работы с низким выходом значения в пределах своего восьмибитного выходного диапазона. (В некоторых ссылках говорится, что это «лучшие биты!»)

Здесь мы говорим, что более мелкие входные значения могут давать лучшая детализация в темных областях. Вот где динамический диапазон становится важным. Динамический диапазон определяет, насколько темной может быть самая темная часть изображения. и насколько светлым может быть самый яркий, при этом показывая детали в обоих. Динамический диапазон исходного материала должен фактически включать нужную деталь. Фотопечать, например, может иметь максимальный диапазон контрастности около 100 к 1; на полутоновой печатной странице обычно еще меньше. Для некоторых исходных материалов может не быть «темного против темного». дифференциация в самых темных областях.

Другим важным значением динамического диапазона является значение для сканера. Чтобы быть полезным, данные о пикселях темной области изображения, переданные дополнительными входными битами должны представлять реальные данные из изображения, не низкий уровень шума от сканера и его электроники. Расширенный динамический диапазон означает более сильный сигнал и меньше шума: лучшее соотношение сигнал/шум — более вероятно, что низкие входные значения представляют реальные данные отсканированного изображения а не шум.

Глубина цвета 24 бита что это: Какой объём видеопамяти необходимый для изображения глубиной цвета 24 бита а разрешающая способность дисплея -…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх