Схема фотовспышки на батарейках: Схемы и принцип работы фотовспышек

Схемы и принцип работы фотовспышек

Ремонт фотовспышки в фотоаппарате требует неукоснительного соблюдения правил техники безопасности. ПОМНИТЕ, что на накопительном конденсаторе вспышки напряжение порядка 300 вольт, при неаккуратном обращении можете не только получить удар электрическим током, но и легко угробить безвозвратно фотоаппарат. Разряжайте накопительный конденсатор фотовспышки каждый раз после подключения питания. Разряжать конденсатор можно через резистор сопротивлением 1-2кОм.  

Материал данной статьи предназначен, в первую очередь, для начинающих мастеров, желающих более подробно ознакомиться с принципом работы схемы фотовспышки.

Цифровой фотоаппарат без вспышки мало пригоден к работе, а в условиях слабой освещенности пользоваться им не имеет смысла. Поэтому ремонт фотоаппаратов с такой неисправностью у пользователей, как правило, не вызывает вопросов.

Что касается практической стороны вопроса: часто процесс ремонта осложняется не столько из-за отсутствия комплектующих, сколько из-за недостатка сервисной документации. К сожалению, в настоящее время крайне мало технической литературы, посвященной устройству фотовспышек, описанию принципов работы их электронных схем, несмотря на то, что огромный интерес к устройству фото вспышек и, тем более, к их ремонту существует не только у владельцев фотоаппаратов, но и, зачастую, у работников

мастерских по ремонту фотоаппаратов, особенно в провинции.

Работу фотовспышки рассмотрим по принципиальной схеме пленочного фотоаппарата рис 1.

Схема блокинг-генератора фотовспышки собрана на транзисторе Q303. В момент включения транзистор открыт отрицательным напряжением, поступающим через резистор R305, обмотку трансформатора T301, открытый транзистор Q304. В результате через обмотку I трансформатора течет ток, который индуцирует импульс положительной полярности в обмотке II. Он закрывает транзистор Q303. Ток в обмотке I начинает убывать. Исчезающее магнитное поле наводит в обмотке II импульс отрицательной полярности, что вновь приводит к открыванию транзистора. Процесс повторяется непрерывно. Импульсы разной полярности наводят ток в обмотке III трансформатора и, выпрямляясь диодом D302, заряжают конденсаторы C303 до напряжения 250 – 280 вольт, C302 через резисторы R308 R306. При нажатии кнопки «спуск» срабатывает синхроконтакт вспышки. Положительное напряжение подается на управляющий электрод тиристора SR301, открывает его и замыкает на корпус конденсатор C302, вызывая его разряд и резкое уменьшение тока в первичной обмотке трансформатора Т302. Исчезающее магнитное поле наводит во вторичной обмотки высоковольтный импульс, вызывающий пробой газа в колбе лампы вспышки XE301 и как следствие яркое кратковременное свечение.

 На рис.2 принципиальная схема фотовспышки цифрового фотоаппарата Sony DSC – P52 (для увеличения рисунка – щелкните по изображению). Разобраться с принципом работы схемы вспышки цифрового фотоаппарата теперь не составит труда. Все та же схема блокинг-генератора Q503, T501, выпрямительный диод D502, накопительный конденсатор C508. Роль ключа на тиристоре SR301 выполняет IGBT транзистор Q506 и т.д. 

И, в заключении, хотелось бы собщить, что в ближайшее время нашей мастерской планируется выпустить электронную книгу «Ремонт фотовспышки в фотоаппарате», которую можно будет скачать на нашем сайте. Помимо принципиальных схем фотовспышек современных цифровых фотоаппаратов, зеркальных фотокамер ведущих брэндов, в книге будут опубликованы наиболее часто встречающиеся неисправности в фотовспышках, способы их обнаружения и устранения.

Источник: remtelevid.ru

Дополнительная фотовспышка для цифрового фотоаппарата

Андрей Шарый, Украина, Черниговская область
andrij_s (at) mail.ru

Многие недорогие цифровые фотоаппараты, называемые еще «цифровыми мыльницами», стали в наши дни довольно популярными ввиду их относительной дешевизны а также удобства использования. Они имеют небольшие размеры и вес, позволяют получить неплохие снимки. Конечно они не могут соревноваться с зеркальными камерами по качеству снимков, но благодаря дешевизне и компактности все же находят немало потребителей. Все фотоаппараты такого уровня оснащаются небольшой встроенной фотовспышкой, без которой невозможно вести съемку в условиях сумерек или недостаточного освещения. Но встроенная вспышка часто имеет очень маленькую мощность, достаточную для съемки в темноте только на расстоянии несколько метров. Жесткое крепление такой вспышки также не дает возможности нормально осуществлять портретную съемку в условиях, когда природного освещения недостаточно. Вобщем, имеется соблазн подключить к фотоаппарату дополнительную вспышку. Но для корректной работы вспышки нужен синхроконтакт, замыкающийся в момент открывания затвора, а такие вещи на обычных фотоаппаратах сейчас не устанавливаются. «Башмак» для подключения вспышки встречается только на дорогих фотокамерах, да и сама современная вспышка стоит недешево. В то же время у многих дома есть старые фотовспышки, использовавшиеся ранее с обычными пленочными фотоаппаратами. Описанное ниже устройство предназначено для синхронизации дополнительной фотовспышки со вспышкой цифрового фотоаппарата для получения более яркого освещения при съемке в темноте или для достижения «мягкого» света при портретной съемке в помещении путем направления дополнительной вспышки на потолок или стенку комнаты.

Устройство реагирует на свет вспышки фотоаппарата, потому для подключения не нужно вторгаться в конструкцию фотоаппарата. Такое решение позволяет синхронизировать с фотоаппаратом несколько ламп-вспышек одновременно, что может быть полезно при съемке в условиях студии уже нормальными фотокамерами.

Рисунок 1. Схема синхронизирующего устройства

Работа устройства.

Когда мигает вспышка фотоаппарата, на фотодиоде LED1 возникает переменная ЭДС, которая усиливается до нескольких вольт усилителем на DA2 и через конденсатор С4 поступает на вход триггера DD1.1, на котором собран одновибратор, формирующий из всплесков ЭДС импульс, пригодный для дальнейшей обработки цифровыми ИМС. Большинство цифровых фотоаппаратов при съемке дают ДВЕ вспышки, первая из которых «пристрелочная» — фотоаппарат наводит резкость, оценивает освещенность, а вторая — основная, именно во время второй вспышки открывается затвор фотоаппарата. Вспышки следуют одна за одной с интервалом несколько десятков миллисекунд, потому часто глазом воспринимаются как одна. Убедится в том, что их две, можно подключив ко входу осциллографа фотодиод и «моргнуть» на него фотоаппаратом. Именно из-за необходимости включать дополнительную вспышку в момент второй вспышки фотоаппарата в схему пришлось ввести счетчик DD2. Итак, в момент начала второй вспышки фотоаппарата на вход счетчика приходит фронт второго импульса. В этот момент на выходе «2», это вывод 4 DD2, появится напряжение логической 1, которое и запускает одновибратор на DD1.2, формирующий импульс для открывания тиристора VS1. Открытый тиристор замыкает синхроконтакт фотовспышки, она срабатывает в штатном режиме.

Все конденсаторы фотовспышки разряжаются, ток через синхроконтакт прекращается, что приводит к запиранию тиристора VS1. В это же время через цепочку D1-R7 начинает разряжаться конденсатор С6, что приводит к повышению напряжения относительно общего провода на R-входе счетчика DD2 и его сбросу к первоначальному состоянию. Устройство снова готово к отработке следующей вспышки. Если по каким-либо причинам счетчик сбился и мигает не по второй, а по первой вспышке фотоаппарата, что проявляется очень темными снимками, даже темнее, чем без дополнительной  вспышки, то нужно на несколько секунд выключить устройство из сети и включить обратно — С6 перезарядится и сбросит счетчик. Для упрощения схемы на ней не показаны цепи питания микросхем: к общему проводу должны быть подключены следующие выводы: в.4 DA2, в.7 DD1, в.8 DD2; к проводнику +9В (выход DA1): в.7 DA2, в.14 DD1, в.16 DD2.

Настройка.

Собранное из исправных деталей устройство в настройке не нуждается. Если что-то не работает, надо в первую очередь убедится с помощью осциллографа, что в момент вспышек фотоаппарата на выводе 6 DD1 проходят импульсы достаточной амплитуды для срабатывания триггера. Если амплитуда недостаточна, пробуем ориентировать светодиод более точно на вспышку фотоаппарата. Далее проверяют наличие в момент мигания фотоаппарата двух прямоугольных импульсов на выводе 1 DD1. Для некоторых фотоаппаратов может придется подобрать параметры времязадающей цепочки C5-R5, чтобы импульсы четко разделялись и не сливались в один.

Важно также правильное подключение к дополнительной фотовспышке с соблюдением полярности. В большинстве старых фотовспышек для подключения к фотоаппарату используется коаксиальный разъем, на корпус которого подключен «-», а на центральный контакт — «+». Полярность легко проверить, подключив к контактам включенной вспышки мультиметр в режиме вольтметра. Если полярность перепутать — схема работать не будет, но и никаких разрушительных последствий не случится. При работе с устройством фотодиод располагают так, чтобы он был ориентирован на вспышку фотоаппарата, но в кадр не попадал. Дополнительную лампу-вспышку направляют на объект съемки, если это ночная съемка, или на потолок или заднюю стенку комнаты, если это съемка внутри помещения.

Прежде чем начнут получаться качественные снимки надо потренироваться и найти оптимальное положение и направление дополнительной вспышки. Для сравнения приведены два фото, сделанные в одном и том же помещении одним и тем же фотоаппаратом: одно сделано с использованием дополнительной вспышки «Луч 1 М», направленной на заднюю стенку комнаты (за спину фотографу), а другое — только со стандартной вспышкой фотоаппарата Olympus C480Z.
Фото выложены «как есть», без коррекции яркости-контраста. На снимках, которые делались аналогичным комплектом ночью, можно легко видеть предметы, расположенные в 30 метрах от фотоаппарата. Все что ближе 10 метров получается пересвеченным.

О деталях.

Схема не критична к используемым деталям и допускает много вариаций. Трансформатор — любой сетевой маломощный, достаточно даже 1-2 Вт, с напряжением на вторичной обмотке 10-12 В при токе 0,1А. Диодный мост можно использовать готовый, типа КЦ407, или собрать из 4-х отдельных диодов типа КД105, КД104, 1N4001. В качестве DA1 применяется любая ИМС стабилизатора напряжения на 9 В, например, 7809, 78L09 или аналогичная из серии КР142ЕНхх. DA2 — любой операционный усилитель с возможно большим коэффициентом усиления. Подходят КР140УД6, УД8, КР544УД1 и.т.п.

Цифровые ИМС можно применить также и 176 серии. Транзистор Т1 — любой маломощный, например, КТ3117, КТ315, или импортный аналог. Диод D1 может быть КД521, КД522, любой кремниевый маломощный. Тиристор КУ202К можно заменить любым тиристором, рассчитанным на прямое напряжение в запертом состоянии более 300В, возможно применение импортных типа TYN610. Фотодиод лучше установить прямо на печатной плате, чтобы его проводники не ловили всякие наводки. Если надо расположить данное устройство подальше от лампы-вспышки, то лучше удлинять ее провод, идущий к тиристору.

Вариант печатной платы размером 63х38мм приведен на рисунке 2.

Рисунок 2. Печатная плата.

 

Карманная вспышка - схема » Полезные самоделки

Выключателем SA1 подают на вспышку питание. Конденсатор С1 заряжается от батареи GB1 до ее напряжения. Резистор R1 ограничивает ток зарядки, который длится около 12 с. При спуске затвора фотоаппарата синхроконтакт СК через конденсатор C2 подает импульс напряжения на управляющий электрод тринистора VS1. Тринистор мгновенно замыкает цепь лампы накаливания EL1, на которую разряжается конденсатор С1. Длительность вспышки составляет приблизительно 1/50 с. Чтобы это было возможно, напряжение на заряженном конденсаторе должно примерно втрое превышать рабочее напряжение лампы накаливания. Причиной тому служат тепловая инерция нити лампы и крутопадающая характеристика разрядного напряжения конденсатора. Начальный пик тока разрядки расходуется на разогрев нити, после чего возникает кратковременное яркое свечение в режиме перекала. Чтобы выключить тринистор после срабатывания и дать возможность конденсатору вновь зарядиться для следующей вспышки, достаточно нажать и тут же отпустить кнопку выключателя SB1.

 

 

Рис.1. Принципиальная схема вспышки.

 

Сравнительно продолжительная зарядка конденсатора небольшим током позволяет использовать для вспышки весьма небольшой источник питания GB1. Так, с лампой мощностью 15...20 Вт от фильмоскопа, рассчитанной на напряжение 6 В, его можно составить из двух-трех батарей "Корунд", соединенных последовательно.

 

В самодельной вспышке может быть использован любой тринистор серии КУ201, любой диод (кроме указанного на схеме) серии Д226. Конденсатор С1 - К50-6, С2 - МБМ, КЛС, КМ, резисторы - МЛТ или МТ мощностью не менее 0,125 Вт. Разъем для подключения к синхроконтакту можно изготовить самим из отрезка изолированного полихлорвинилом одножильного провода подходящего диаметра и насаженной поверх изоляции тонкостенной металлической трубки.

 

Все устройство размещают в готовом либо самодельном корпусе, снабженным зажимом для крепления. Рефлектор - отражатель (например, крупная столовая ложка) с лампой могут быть утоплены внутрь корпуса вспышки, вокруг них на плате располагают детали и источник питания. Взаимное расположение деталей не играет роли и определяется только компоновочными соображениями. Патрон для лампы можно использовать от старого автомобильного фонаря-переноски или соорудить его самим.

 

Аккуратно собранная вспышка не требует налаживания. Поскольку работа в импульсно-перекальном режиме способна сокращать срок службы лампы, желательно предусмотреть возможность простой ее замены.

 

Описанный вариант вспышки прост, но обладает недостатком - после каждой вспышки нужно выключать тринистор. Эту операцию можно поручить автоматике (рис. 2). Исходный вариант дополнен электронным ключом на транзисторе VT1, который управляется одновибратором, выполненным на транзисторах VT3, VT4, и выходным каскадом на транзисторе VT2.

 

 

Рис.2. Схема автоматики.

 

Запускается мультивибратор по команде синхроконтакта СК одновременно с включением тринистора VS1 и лампы EL1. Закрывающийся при этом транзистор VT3 открывает VT2, что заставляет ключ VT1 прервать остаточный ток (ток удержания) сработавшего тринистора. Примерно через 0,5 с устройство вернется в исходное состояние и начнется новая зарядка конденсатора C1.

 

Чувствительность одновибратора к запускающим импульсам можно регулировать подбором резистора R9, надежность закрывания транзистора VT1 - подбором резистора R4. Поскольку питание автоматики, во избежание перегрузки транзисторов, ведется от батареи GB2 ("Корунд"), следует время от времени менять батареи местами для более равномерного использования их емкости.

 

Детали карманной вспышки располагают на печатной плате (рис. 3), размеры которой соответствуют габаритам конденсатора С1. Это позволяет рационально компоновать их рядом либо симметрично относительно рефлектора вспышки.

 

 

Рис.3. Печатная плата карманной вспышки.

 

Кроме указанных на схеме, в узле автоматики могут быть использованы транзисторы МП37Б, МП38. Конденсаторы - оксидный К50-6 (C1) и КЛС (остальные), резисторы - МЛТ либо МТ мощностью рассеивания не менее 0,125 Вт.

 

Внимание!!! Внимание, информация содержащаяся на данной странице, может быть устаревшей и содержать ошибки. Поэтому приводиться исключительно в ознакомительных целях.

Ю.Прокопцев, г.Москва

Новая жизнь старинной фотовспышки Электроника ФЭ-26

Копались тут с Майором и Джабарычем в запасниках и обнаружили старинную фотовспышку, которую еще в 1989 году мне подарил дедушка.

Фотовспышка Электроника ФЭ-26 «Данко»

Вставили батарейки, пыхнули, порадовались, прониклись ностальгией по тем временам.

Задумались, а как бы ее приспособить к делу? Наворачивать схему синхронизации — это не для меня. А вручную?

Действительно: что мешает мне просто нажать одной рукой на кнопку фотоаппарата, а другой — на кнопку вспышки? При выдержке 0.5-1 с сделать это элементарно.

Фотовспышка Электроника ФЭ-26 «Данко» в руке фотографа

Сказано — сделано. Вышли во двор и сняли два кадра: один со встроенной вспышкой фотоаппарата, а другой — на выдержке 1 с со внешней вспышкой на вытянутой в сторону руке. Результат оказался неожиданно приятным. Сравните:

Встроенная фотовспышка

Внешняя фотовспышка

Как и следовало ожидать, на кадре с внешней вспышкой наши герои выглядят гораздо симпатичнее, да и проблема красных глаз решилась сама собой. Лицо Майора, подобное круглому лику Луны в первом случае, мистическим образом ужалось и постройнело во втором. И, заметьте, никакого фотошопа!

Таким образом, я понял, что даже при отсутствии синхронизации, внешняя фотовспышка — весьма полезное дополнение к фотоаппарату, особенно ночью или под землей, когда не стоит проблема мешающего освещения. Все-таки, пыхнуть фотовспышкой на вытянутой руке гораздо проще, чем, борясь с шевеленкой, «обмазывать» объект съемки лучиком фонаря, чтобы получить рельефный кадр.

Даже Лисынька в боковом свете фотогеничнее, чем обычно

Вот такая вот чудесная находка.

Инструкция и электрическая принципиальная схема фотовспышки Электроника ФЭ-26 «Данко»

Спустя некоторое время была найдена старинная инструкция от фотовспышки, которую я здесь выкладываю. Особенно полезной кому-то может оказаться электрическая принципиальная схема.

Фотовспышка Электроника ФЭ-26 «Данко»: руководство лист 1

Фотовспышка Электроника ФЭ-26 «Данко»: руководство лист 2

Фотовспышка Электроника ФЭ-26 «Данко»: гарантия

Переделка накамерной вспышки в сетевую, с полным сохранением функционала на примере Godox TT600s

В данном «очерке» разговор будет об том, как можно переделать практически любую накамерную вспышку в вспышку, с питанием от сети, при этом, сохраняя весь функционал, а моментами — даже добавляя новый. Методика по сути, универсальна, и позволяет переделать любую накамерную вспышку. Похожим методом до этого я переделывал Canon Speedlite 155A, Vivitar 285HV и много других.

Для начала, рассмотрим накамерную вспышку «поблочно» (хотя в некоторых случаях, «блок» может быть представлен парой-другой деталей).  Она условно состоит из следующих силовых частей:

1. Источника низковольтного напряжения (батарейки, аккумуляторы)

2. Источника высокого напряжения (повышающий преобразователь)

3. Источника низковольтного напряжения, который обеспечивает питание схемы управления, индикаций и так далее.

 

Исходя из вышеперечисленного, есть несколько методов, которые можно использовать для питания накамерной вспышки от сети. Самый простой из них, использовать внешний низковольный источник питания (обычно — 6 вольт) для питания камеры, вместо батареек и аккумуляторов. Несмотря на кажушую простоту, этот метод имеет несколько серьезных недостатков:

1. Высокое время перезарядки — у большинства вспышек, время перезарядки на полной мощности может доходить до 5-6 секунд, что часто сильно ограничивает применение.

2. Необходим источник питания с хорошей нагрузочной способностью — вспышки во время перезарядки, могут потреблять до 11-15 ампер, что подразумевает наличие довольно крупноразмерного блока питания, и не менее «крутых» проводов от него к вспышке, что ухудшает портативность и практичность.

3. Перегрев и ненужная перегрузка силовых элементов вспышки.

От вышеуказанных недостатков свободна схема питания, когда на вспышку отдельно подаётся высокое напряжение, для зарядки разрядного конденсатора (330в). У всех более-менее серьезных вспышек есть внешний вход для подачи высоковольтного питания, так что по идее если подать на этот вход 330 вольт постоянного тока, то вроде всё будет в порядке, но не совсем — у вспышек есть и низковольтная часть, для питания которой нужен отдельный источник тока, а низковольтного входа у вспышек обычно нет (мне не встречалось такое в современных вспышках, хотя в вспышках и 60х-70х годов такое было весьма частым). Так что приходится держать один комплект аккумуляторов-батареек в вспышке в любом случае, которые, конечно, разряжаются не так быстро, как при обычном применении, но вспышка «заводит» повышающий преобразователь в любом случае, и если даже прикрутить внешний блок питания на 6 вольт, он в любом случае должен быть довольно мощным. Следовательно, надо придумать метод отключения встроенного преобразователя. Всё вышеперечисленное реализовано в конструкций, которую я опишу чуть ниже.

Для переделки была выбрана вспышка Godox TT600s, у которой кроме доступной цены, есть встроенный 2.4Ghz радиосинхронизатор с поддержкой HSS, и качество сборки и схемотехнические решения вполне хорошие. У этой вспышки уже есть разъем для высоковольтного источника тока (совместим по пинауту и напряжению с вспышками фирмы Canon.

 

Решено было переделать вспышку таким образом, чтоб была возможность вернуть всё обратно, без порчи внешнего вида. Для этого, штатный разъем для высоковольтного источника питания был временно демонтирован, а на его место установлен 6 штырьковый разъем серии HR11, от фирмы HiRose electronics: https://www.digikey.com/product-detail/en/hirose-electric-co-ltd/HR11-9BR-6S(73)/h224047-ND/3978300 

 

Сама вспышка была немножко доработана, согласно нижеприведённой схеме:

Часть деталей была установлена навесным монтажом (диоды D8-D9-D10) а остальные были размещены на небольшой плате.  Высокое напряжение было подключено к плате преобразователя, к точке, которая обозначена как TP 320V, а нога №4 микросхемы TL494 была отключена от земли, и подключена к плате — через этот вывод будет отключатся встроенный преобразователь вспышки. Так как у вспышки есть управление пилотным светом, решил вывести и его, а так как он идёт прямо из МК, без подключения к земле или + выводу, пришлось выводить оба вывода, и ставить оптрон на приёмной стороне. К сожалению, не все этапы переделки сфотографировал, так как изначально не планировал писать обзор, но что есть, то есть.

Принцип работы схемы простой — как только подаём внешнее питание, +5 вольт через LDO стабилизатор попадает на ногу №4 микросхемы TL494, тем самым, запрещая работу преобразователя. А ток через диод D8, обеспечивает работу остальных компонентов вспышки. Конечно, при таком подключении, надо извлекать аккумуляторы из вспышки, но думаю, это особых проблем не будет создавать. 

С вспышкой вроде бы разобрались, перейдём к остальному. Для защиты от поражения электрическим током, будем использовать развязывающий трансформатор (300вт), изготовление которого заказал в Китае, и который обошелся дороже всех, почти $50, включая доставку. Но трансформатор качественный, тихий, мощный, потребление тока на ХХ — низкое. Специально был заказан трансформатор с одной обмоткой на 220 вольт и двумя — на 110 вольт. При работе от сети 220 вольт, обмотки 110 вольт включены последовательно, а когда понадобится работа от 110 вольт, то они будут включены параллельно. 

Для сборки был использован корпус, обзор которого вы можете посмотреть в моем блоге.

У электролитических конденсаторов есть один минус, когда они разряжены, внутреннее сопротивление низкое, но как только напряжение на конденсаторе превысит половину от номинального, внутреннее сопротивление сильно возрастает, и процесс зарядки конденсатора замедляется. Так что встаём перед дилеммой — если не ограничить начальный ток, то конденсатор разорвёт, или выбьет пробки, но если его ограничить на безопасном уровне, то от 300вт трансформатора, конденсатор 330в 1500мкф (типичные параметры для конденсатора внутри вспышки) заряжается порядка 5-6 секунд, что сводит практически на нет все преимущества сетевого питания. Для решения этой проблемы, разработано множество разных схем «быстрозарядок». Мной была использована одна из разработок Waldemar Szumanski (www.ws.ps.pl ) Почему именно это а не другая? а просто у меня уже была собрана плата на ней, для другого проекта, так что решил использовать то, что есть. В схему были внесены незначительные доработки:

Выходной транзистор был применён IRG4BC40W, входная сборка набрана из диодов 6А10, а не применена дискретная, резистор R10 был подобран по напряжению, выходной конденсатор стал 600мкф 350в и так далее. С этой схемой, вышеуказанный трансформатор перезаряжает конденсатор 1500мкф 330 вольт за порядка 0.3 секунды.

 

В конструкцию были также добавлены сетевая кнопка включения, индикатор выходного напряжения (Так приятно бывает смотреть на бегающую стрелку осциллографа) и аж 4 выхода на вспышки, это на случай, если хозяин решит подключить дополнительные вспышки. Разъемы использовал китайские, тип MINSOO XS9, на 4 штырька. На фото показаны «неправильные» разъемы, в финальной конструкций был применён правильный тип, чтоб никого током не убило. 

 

С цветами получилось не совсем хорошо — кнопка оранжевая, а индикатор — зёленный. Непорядок, так что заказал индикатор с оранжевыми цифрами, жду. Многим наверное понравилась винтажная ручка сбоку — это я снял с какого-то древнего ЗИПа. А сам дизайн, решил делать в чёрно-белом цвете, а-ля Xiaomi 🙂 Почему сделал ручку сбоку, хотя логичней выглядело бы если сверху? а потому что, девайс получился довольно тяжелым, вес почти 4 кило, и если бы ручка была бы сверху, то надо было бы точно выбирать баланс по весу, при переноске прибор раскачивался бы, и задевал носителя, а получить 4 килограммовой железкой «на ходу», дело не из приятных.

С задней стороны блока — разьем питания и предохранитель на 16А. Была идея сделать шильдик а-ля совьет милитари течникс, но решил время зря не тратить.

Блок питания готов, перехожу к части, которая будет расположена в непосредственной близости от вспышки, и будет обеспечивать её как низковольтным, так и высоковольтным питанием, а также обеспечит питанием и управлением пилотный свет. 

Схема ничего собой особенного не представляет, это простой флайбек на LNK364PN на 6 вольт и 0.5А, простая схема управления пилотом, и лед драйвер на 8-12 диодов и ток в 0.35А.  Несмотря на простоту, доводка именно этой части схемы потребовала много времени. Первым делом — пилотный свет. Эти талантливые люди из годокса, для управления пилотным светодиодом в вспышке (5мм, красного цвета), решили использовать ШИМ модуляцию, поэтому, в начале реле отстукивало морзянку, пришлось добавить диод, резистор и конденсатор, чтоб сгладить пульсаций ШИМ. Потом, сгорало само реле, от зарядного тока конденсатора LED Драйвера — пришлось конденсатор выносить до реле. Но наконец, все проблемы решены, и плата собрана, отлажена и даже установлена в корпус:

 В процессе тестирования, выяснилась интересная особенность — пилот светится максимум 30 секунд, видимо, для экономии ресурса батареек, Поэтому, уже в процессе сборки пришлось добавлять костыль в виде включателя, параллельно контактам реле. В последующих моделях конечно добавлю защёлку на 555, но сейчас, пусть будет всё как есть.

Из чёрной коробки выходит короткий шлейф, которым коробка подключается к вспышке. На самой коробке еще два разъема: XS9 им подаётся 330 вольт постоянки от блока питания и  XS8 — к нему подключён пилотный свет. У коробочки также есть «фотографическая» резьба, через которую, используя специально доработанное (сточил часть зубцов) крутилку, коробка крепится к штативу.

 Немножко про пилотный свет, он набран из 10мм белых светодиодов, на ток в 100мА. Подключение 8 последовательно, 3 таких цепочек параллельно. Выходной ток драйвера понижен с 0.35А до 0.18А, во избежания перегрева светодиодов. Сама сборка диодов заключена в корпус из оргстекла, а на вспышку крепится трением, по двум направляющим.

 

 

Для соединения блоков питания с друг-другом, используется 5 метровый гибкий сетевой шнур, специально предназначенный для такого применения. Покупал тоже в Китае, за 10 метров отдал около 5$.

Так, вроде ничего не пропустил, теперь рассмотрим всё в сборе, и в работе:

 

 

 

Для желающих повторить:

Нет никакой необходимости делать по моей схеме. Главное — сами принципы: Останавливаем встроенный преобразователь, подаём снаружи низковольтное и высоковольтное питание. Если вам не критично время, то на барахолке можете купить старичка ТС-180 от ламповых телевизоров. Он будет жужжать, но при этом — работать. Но не придётся схему на IGBT транзисторе собирать. Вообще, схем «быстрозарядок»  довольно много, с некоторыми из них можно ознакомится тут: www.impulsite.ru 

И немножко офф-топика в заключении.

Некоторые схемотехнические решения и методы, профессионалам могут показаться странными. А это потому что я — самоучка, не имея никакого профильного образования, сам научился всему по книжкам, не было даже возможности спросить у кого-то чего-то (до появления интернета). 

Огромное спасибо завсегдатаям 48го форума  — KaVc, Alexey_Public, RAD, Dikoy, Nixto и всем другим — парни, без вашей помощи и советов, у меня ничего бы не вышло!

 

Фотовспышка Электроника ФЭ-30 обзор и инструкция

P8098999Фотовспышки электроника ФЭ-30 выпускало НПО “Зенит” на заводе МЭЛЗ (г. Зеленоград).

ФЭ-30 — вспышка немного нетипичная для советского фотопрома. Выпускалась она в 90-х и, видимо, иностранный опыт сказывался.

По советским меркам ФЭ-30 — довольно мощная для автономной вспышки, но главное — она имеет поворотную голову с двумя степенями свободы.
P8099002P8099006Рефлектор вспышки можно развернуть влево на 90 градусов, вправо на 180 (до ровно назад), вверх на 90 (до ровно вверх) и вниз на 15 градусов. Это помогает, если снимаешь что-то очень близко.

При умеренной полезности таких манипуляций (остановлюсь на этом позже), выглядело это все нереально круто, конечно.
Мощностью ФЭ-30 конструкторы тоже не обделили.

Мощность вспышки определяется ведущим числом 25 для пленки 100 единиц ГОСТ.

Специально, чтобы немного ориентироваться в том, мало это или много — у меня есть пара небольших статей.

Первая — о мощности советских вспышек.
Вторая — о чувствительности советской фотопленки.

На самом деле, исходя только из паспортных характеристик сравнить мощность современных и советских вспышек можно только очень и очень приблизительно.

Рискну предположить, что по мощности ФЭ-30 находится где-то посередине между вспышками Nikon SB-400 и SB-700. Т.е. это весьма мощная вспышка.

Кроме того, ФЭ-30 это относительно компактное и нетяжелое устройство. С комплектом батареек на борту она весит всего 300 грамм.

P8239354Ну и как вы уже поняли, ФЭ-30 — это автономная вспышка. Она работает от 4-х батареек А316, или попросту — от 4-х пальчиковых батареек. Отсек для батареек справа.

Как ориентировать батарейки с т.з. их полярности — показано на крышке, но сделано это очень мелко и неочевидно. В инструкции к данному вопросу также отнеслись халатно. Поэтому, на всякий случай показываю правильную ориентацию батареек.
Заряжается вспышка шустро. С современными батарейками время зарядки всего 4-5 секунд. В паспорте для советских батареек указано время зарядки 10 секунд (12 секунд при зарядке от сети).

P8099009Для вспышки ФЭ-30 можно было дополнительно приобрести сетевой блок питания «Электроника БПФ-30». В комплект он не шел.

На левом торце вспышки есть специальный разъем для подключения внешнего блока питания.


3896a8ecd9c511e6b77700155d1fae00_1-1920x1080Идея хорошая и компромисс разумный. Конечно, вспышка с внешним блоком питания — конструкция еще более громоздкая, чем просто сетевая вспышка. Блок по размеру сопоставим со вспышкой.  Но зато при наличии батареек можно не париться со всеми этими шнурами.
P8098996Крепится вспышка в обойме аппарата надежно. Предусмотрена специальная прижимная гайка. Такие способы крепления применяются и на современных вспышках.

Синхронизация только по центральному контакту. Проводной синхронизации нет. Для 90-х это естественно.
Органы управления вспышкой сосредоточены на задней панели, и органов этих на удивление немало.

P8099012Сверху находится калькулятор диафрагмы. На советских вспышках в основном были или не интерактивные таблички или круглые вращающиеся калькуляторы.

В данном случае конструкторы порадовали необычным видом.

В широком окне влево-вправо ходит линейка с диафрагменными числами. Над окном находится неподвижная шкала дистанций от 1 до 22 метров.
Линейку нужно двигать за полозок, расположенный в прорези ниже справа.

Левее полозка находится окошко с чувствительностью пленки. Числа чувствительности нанесены на нижнюю часть подвижной линейки и меняются в окошке при движении полозка.

Шкал чувствительности предлагается две — ГОСТ и DIN.

Расчет диафрагмы прост. Двигая полозок, выставляем в окошке чувствительность заряженной в аппарат пленки.

Сразу после этого в верхнем окошке под каждым числом дистанции можно видеть рекомендованную диафрагму. Окно широкое и ассортимент диафрагм и расстояний виден сразу весь.

Согласно калькулятору, на 125-ю пленку при f2 (штатный Гелиос) можно было снимать с дистанции 15 метров. Очень недурно!

Ниже калькулятора расположены еще две кнопки, лампа и переключатель.

Левая кнопка пружинная без фиксации. Эта кнопка называется «ПРОВЕРКА». Служит она для поверки исправности цепей вспышки (!!!).

Нажимать кнопку нужно при выключенном питании. Если вспышка исправна, то при нажатии на кнопку будет загораться световой индикатор «ГОТОВН» правее. При отпускании кнопки индикатор гаснет.

Что сказать? Я впервые вижу, чтобы работоспособность устройства контролировалась отдельной функцией с панели управления!

Правее находится тумблер питания. Левое положение — выключено, правое — включено.

При включении вспышка начинает заряжаться с характерным писком и при достаточном заряде загорается все тот же индикатор «ГОТОВН».

Еще правее — кнопка «ТЕСТ». Она для пробного срабатывания вспышки.

О качестве сборки и материалов. Качеством и того и другое напоминает советские калькуляторы «Электроника». Один в один. Т.е. все дешево, сердито, поскрипывает, но в целом неплохо. Не разваливается.

На последок, почему я считаю поворотную головку скорее имиджевой функцией?

Ну конечно потому, что при съемке в отраженном свете калькулятор вспышки уже не может посоветовать ничего дельного. Какую выставить диафрагму — совершенно неясно.

Помочь в этом случае может только опыт и опыт немалый. И все равно просчеты будут даже у опытного пользователя. А что говорить о рядовом фотолюбителе?

Тем не менее, кашу маслом не испортишь. ФЭ-30 — отличная вспышка. Мощная, удобная, функциональная, симпатичная. Я с ней снимал и претензий не имею.

По мне, так ФЭ-30 — лучший кандидат на современное использование с советским аппаратом, если вы стремитесь к аутентичности съемки.

На этом у меня все, удачи!


Инструкция:

000102030405


Уважаемые читатели!
В социальных сетях для сайта Фототехника СССР созданы страницы – визитные карточки.
Если вам интересен мой ресурс, приглашаю поддержать проект и стать участником любого из сообществ. Делитесь опытом, высказывайте соображения, задавайте вопросы, участвуйте в дискуссиях! Комментарии на сайте не требуют регистрации. Просто оставляйте поля пустыми.
Особое внимание обращаю на новую страничку в Instagram.

Переход по кнопкам вверху экрана или по ссылкам  на странице контактов


 

РЕМОНТ ВСПЫШКИ


РЕМОНТ ИМПОРТНОЙ ВСПЫШКИ

   Попала мне на ремонт хорошая цифровую фотовспышка, которая имеет батареечное питание и крепится непосредственно на синхроконтакте зеркального цифрового фотоаппарата. Проблема была в том, что несмотря на нормальную работу низковольтной цифровой части, вспыха не происходило даже при нажатии кнопки "тест". Естественно, сразу появляется мысль про три возможные проблемы: Отсутствие высокого напряжения 300 В на накопительном конденсаторе 1000 мкф; Сгоревший элемент управления вспыхом - который подаёт импульс тока на лампу; Неисправность самой разрядной лампы.

   Схему для ремонта не нашёл, но это не проблема - и так разберусь чё к чему. Напряжение на конденсаторе оказалось в норме, про что косвенно свидетельствовал постепенно затихающий свист трансформатора преобразователя шести вольт от батареек в 300 В, после включения фотовспышки. В качестве мощного ключа стоит непонятная деталь с тремя ногами и таинственным обозначением CT40TMH. Что это за зверь сразу не понял, поэтому начал лепить на его место традиционный симистор BT138-600. В общем после первого же пыха симистор приказал долго жить. Предположил, что симистор бракованный - поставил другой. Нажимаю "тест" - та же история: BT138-600 снова пробился, и заодно потянул за собой мощный планарный импульсный диод.

  Понимаю, что происходит нечто ненормальное и только тогда лезу в интернет, с целью во что бы то ни стало найти схему фотовспышки SIGMA EF-500 или хотя-бы её выходного блока. После долгих поисков нашёл на одном форуме по ремонту фотоаппаратов и фотоэлектроники. Смотрим схему высоковольтного блока SIGMA. Так и есть - это мощный IRGP биполярный транзистор с изолированным затвором CT40TMH на 400 В и 200 А. Начинаю пробивать по радиобазарам и магазинам - куда там. Даже и не слышали о таком. Дошло до того что поехал в Питер и зашёл на проспекте в неплохой магазин радиодеталей "Микроника" - но и там тоже облом.

   Совсем уже было думал заказать этот IRGP транзистор в одном интернет магазине за бешеные 20уе, но вовремя пришла идея о замене его на G4PC50W. Этот IRGP транзистор является более мощным аналогом, с предельным напряжением 600 В и ток 200 А. А цена его, почему-то, всего 5уе. Так как по размерам он раза в два больше, и контакты в отверстия платы не лезли ни в какую - пришлось над этим G4PC50W поизвращаться. Обрезаем почти под корень толстые выводы, и к оставшимся 5 мм пятачкам паяем небольшие отрезки провода в изоляции. Всё тщательно изолируем кембриком и изолентой.

   Теперь припаиваем провода соответственно к контактам затвора, коллектора и эмиттера. Диод, заменяем на мощный цилиндрик из импульсного блока питания от телевизора 3УСЦТ. Включаем - всё работает. Для эксперимента и техпрогонки повспыхивал раз 50 подряд - ОК!


Поделитесь полезными схемами


ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ

   Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну.


СВАРОЧНЫЕ ИНВЕРТОРЫ ИЗ КИТАЯ

   В последнее время большую популярность у людей завоевали сварочные инверторы из Китая. Сварочные аппараты инверторного типа, имеют настолько неоспоримые преимущества перед обычными, что единственным их недостатком являлась высокая цена. Однако ситуация изменилась с массовым приходом на наши рынки дешёвых, китайских инверторов.


САМОДЕЛЬНЫЙ ВЫСОКОВОЛЬТНЫЙ ГЕНЕРАТОР

    Провел множество экспериментов и обнаружил много интересных вещей: Один провод заземлен на батарею, второй подключен к обычной лампочке. Внутри ионизируется аргон, которым она заполнена, создавая красивые эффекты. Также ее можно брать руками — ионизация еще сильнее.


СХЕМА ИИП

   Принципиальная схема ИИП изображена на рисунке ниже. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр C1L1C2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1—VD4, пульсации сглаживаются конденсатором С3.


4,5 мкА литий-ионная аккумуляторная батарея

На рисунке 1 показана сверхнизкая мощность, прецизионная схема блокировки минимального напряжения. Схема контролирует напряжение литий-ионной батареи и отключает нагрузку, чтобы защитить батарею от глубокого разряда, когда напряжение батареи падает ниже порога блокировки. Хранение устройства с питанием от батареи в разряженном состоянии подвергает батарею риску полной разрядки. В разряженном состоянии ток в цепи защиты непрерывно разряжает батарею.Если батарея разряжается ниже рекомендованного напряжения конца разряда, общая производительность батареи ухудшается, срок службы сокращается, и батарея может преждевременно разрядиться. Напротив, если напряжение блокировки установлено слишком высоким, максимальная емкость батареи не реализуется.

Рисунок 1. Схема блокировки пониженного напряжения

Режим работы с низким уровнем заряда батареи отображается, когда, например, сотовый телефон автоматически отключается после того, как индикатор низкого уровня заряда батареи мигает в течение некоторого времени.Если телефон находится в этом состоянии и обнаружен несколько месяцев спустя, схема защиты, показанная на рисунке 1, не вызовет перенапряжения и не повредит аккумулятор, поскольку схема защиты потребляет менее 4,5 мкА тока. При таком низком токе время, необходимое литий-ионной батарее для достижения напряжения конца разряда, значительно увеличивается. Для других схем защиты, для которых обычно требуется более высокий ток, скорость разряда выше, что позволяет напряжению аккумулятора упасть ниже безопасного предела за более короткое время.Обратите внимание, что если батарея может разрядиться ниже безопасного предела, происходит невосстановимая потеря емкости.

LT1389 - это не просто эталон напряжения. Его очень низкое потребление тока делает его идеальным выбором для приложений, которые требуют максимального срока службы батареи и отличной точности. Для него требуется ток только 800 нА, точность начального напряжения 0,05% и максимальный температурный дрейф 20ppm / ° C, что соответствует абсолютной погрешности 0,19% в коммерческом диапазоне температур и 0.3% в промышленном температурном диапазоне. Работая на одну пятнадцатую тока, требуемого типичными эталонами, с сопоставимой точностью, LT1389 является самым низким эталоном напряжения питания, доступным на сегодняшний день. Эталонная точность шунта напряжения LT1389 выпускается в четырех вариантах с фиксированным напряжением: 1.25V, 2.5 В, 4.096V и 5.0В. Он доступен в 8-выводном корпусе SO, в коммерческих и промышленных температурных классах.

Низкое энергопотребление (I S <1,5 мкА) и прецизионные технические характеристики делают операционный усилитель ввода / вывода LT1495 идеальным компаньоном для LT1389.Чрезвычайно низкий ток питания сочетается с отличными характеристиками усилителя: входное напряжение смещения составляет максимум 375 мкВ с типичным дрейфом всего 0,4 мкВ / ° C, входной ток смещения составляет максимум 100 пА, а входной ток смещения - 1 нА максимум. Характеристики устройства мало меняются в диапазоне от 2,2 В до ± 15 В. Низкие токи смещения и ток смещения усилителя позволяют использовать резисторы истоков мегомеханического уровня без существенных ошибок. LT1495 доступен в пластиковом 8-контактном корпусе PDIP и SO-8 со стандартной распиновкой двойного операционного усилителя.

LT1389 и LT1495, практически не потребляющие ток, являются идеальным выбором для цепи UVLO и многих других аккумуляторных приложений.

Цепь настроена на одноэлементную литий-ионную батарею, где напряжение блокировки - напряжение, когда схема защиты отключает нагрузку от батареи - составляет 3,0 В. Это напряжение, установленное отношением R1 и R2, измеряется в узле A. Когда напряжение батареи падает ниже 3,0 В, узел A падает ниже порогового значения в узле B, которое определяется как:

Выход U1 будет затем качаться высоко, выключая SW1 и отключая нагрузку от батареи.Однако, как только нагрузка снимается, напряжение батареи отскакивает и будет вызывать узел А, чтобы подняться над опорным напряжением. Выход U1 переключится на низкий уровень, повторно подключив нагрузку к батарее, и напряжение батареи снова упадет ниже 3,0 В. Цикл повторяется и происходит колебание.

Чтобы избежать этого условия, добавляется R5 для обеспечения некоторого гистерезиса вокруг точки срабатывания. Когда выходной сигнал U1 поднимается высоко, чтобы отключить SW1, узел B поднимается на 42 мВ выше узла A, предотвращая колебания вокруг точки срабатывания.Используя формулу ниже, величина гистерезиса для цепи рассчитывается как 92 мВ. Следовательно, V BATT должен подняться выше 3,092 В, прежде чем аккумулятор будет подключен.

Проконсультируйтесь с производителем батареи относительно максимальной ESR при максимальном рекомендуемом токе разряда. Умножьте два значения, чтобы получить минимальный требуемый гистерезис.

Точность контроля напряжения в худшем случае лучше, чем 0,4%. Интересно, что срок службы и емкость батареи напрямую связаны с глубиной разряда.Большее количество циклов можно получить путем частичной, а не полной разрядки литий-ионной батареи, и, наоборот, больше времени использования можно получить путем полной разрядки литий-ионной батареи. Отключение нагрузки при идеальном напряжении в конце разряда идеально подходит в обоих случаях. Для выполнения этой задачи требуется точная общая система. Например, если оптимальное напряжение блокировки должно быть установлено на уровне 3,1 В, общая 5% -ная точность системы выдаст ± 155 мВ, обрезая либо при 2,945 В, либо при 3,255 В.При напряжении блокировки 3,255 В максимальная емкость не достигается. Кроме того, рабочий диапазон уменьшается, а напряжение полностью заряженной батареи составляет 4,1 В. Для общей точности системы 0,4% напряжение блокировки должно составлять 3,088 В или 3,112 В, что более чем в двенадцать раз повышает точность и оптимально достигает максимальной мощности. Кроме того, нагрузка остается отключенной с помощью всего лишь 4,5 мкА в цепи защиты. Таким образом, схема защиты работает, предотвращая глубокий разряд батареи.

Рисунок 2. V BATT против V A с гистерезисом

Нет необходимости в компромиссе между производительностью и потреблением тока. Точность шунта опорного напряжения LT1389 NANOPOWER и LT1495 1.5μA точность железнодорожных к железнодорожным входной / выходной операционный усилитель обеспечивают высокую производительность с практически нулевого потребления тока.

,

зарядки аккумуляторов от USB-порта - Battery University

Ознакомьтесь с ограничениями при зарядке аккумулятора с помощью зарядного устройства USB.

Универсальная последовательная шина (USB) была представлена ​​в 1996 году и с тех пор стала одним из самых распространенных и удобных интерфейсов для электронных устройств. Compaq, DEC, IBM, Intel, NEC и Nortel внесли свой вклад в разработки с целью упрощения подключения периферийных устройств к ПК, а также обеспечения большей скорости передачи данных, чем это было возможно с более ранними интерфейсами.Порт USB также можно использовать для зарядки персональных устройств, но при предельном значении тока 500 мА в оригинальной конструкции это могло быть запоздалой мыслью.

Типичная сеть USB состоит из хоста, который часто является ПК, и периферийных устройств, таких как принтер, смартфон или камера. Потоки данных в обоих направлениях, но мощность однонаправленная и всегда течет от хоста к устройству. Хост не может получать питание от внешнего источника.

С 5 В и 500 мА доступны в версии USB 1.0 и 2,0, и 900 мА на USB 3.0, USB может заряжать небольшой литий-ионный блок с одной ячейкой. Однако при подключении слишком большого количества гаджетов существует опасность перегрузки USB-концентратора. Зарядка устройства, потребляющего 500 мА, соединенного с другими нагрузками, превысит ограничение тока порта, что приведет к падению напряжения и возможному отказу системы. Чтобы предотвратить перегрузку, некоторые хосты включают в себя цепи ограничения тока, которые отключают питание при перегрузке.

Оригинальный порт USB может заряжать только небольшую одноячеистую литий-ионную батарею.Зарядка блока 3,6 В начинается с подачи постоянного тока на пиковое напряжение 4,20 В / элемент, после чего напряжение достигает пика, и ток начинает уменьшаться. (См. BU-409: Зарядка литий-ионная.) Из-за падения напряжения в кабеле и разъемах, которое составляет около 350 мВ, а также из-за потерь в зарядной цепи, напряжение 5 В может быть недостаточно высоким для полной зарядки батареи. , Это небольшая проблема; Батарея будет заряжаться только до 70-процентного уровня заряда и обеспечит немного более короткое время работы, чем при полностью насыщенном заряде.Преимущество: Li-ion будет работать дольше, если не будет полностью заряжен.

Стандартные USB-штекеры A и B, как показано на рисунке 1, имеют четыре контакта и экран. Контакт 1 подает +5 В постоянного тока, а контакт 4 образует землю, которая также подключается к экрану. Два более коротких контакта, 2 и 3, отмечены D- и D + и несут данные. При зарядке батареи эти контакты не имеют никакой другой функции, кроме как согласовывать ток.

Рис. 1. Конфигурация контактов стандартных USB-разъемов A и B, если смотреть со стороны разъема.

Контакт 1 несет +5 В постоянного тока (красный провод), а 4 - заземление (черный провод). Корпус соединяется с землей и обеспечивает экранирование. Контакт 2 (D-, белый провод) и контакт 3 (D +, зеленый провод) содержат данные.


Помимо стандартных конфигураций типа A и типа B с 4 контактами, есть также USB Mini-A, Mini-B, Micro-A и Micro-B, которые имеют идентификационный контакт, позволяющий определять, какой конец кабеля подключен дюйма Внешний вывод-1 положительный, а вывод-4 отрицательный.Кабели USB, как правило, стандартного типа A на одном конце и типа B, Mini-B или Micro-B на другом. Описанный ниже новый разъем типа C имеет 24 контакта и работает по стандарту USB 3.1.


Мощность доставки

USB 2.0 с током 500 мА имеет ограничения при зарядке аккумулятора смартфона или планшета большего размера. Работа смартфона на ярком экране во время зарядки может привести к полной разрядке батареи, поскольку USB не может удовлетворить оба эти требования. Подключение высокоскоростного дисковода требует более 500 мА, и это может вызвать проблемы с питанием с оригинальным портом USB.

В 2008 году USB 3.0 уменьшил дефицит электроэнергии, увеличив ток до 900 мА. Этот текущий потолок был выбран для того, чтобы тонкий провод заземления не мешал высокоскоростной передаче данных при полной нагрузке.

В связи с необходимостью большей мощности Форум разработчиков USB выпустил в 2007 году спецификацию зарядки аккумулятора, которая позволяет ускорить процесс зарядки от USB-хоста. Это привело к тому, что выделенный порт зарядного устройства (DCP) служит в качестве зарядного устройства USB, обеспечивая токи 1500 мА и выше, подключая DCP к розетке переменного тока или транспортному средству.Для активации DCP выводы D- и D + внутренне соединены резистором с сопротивлением не более 200 Ом. Это отличает DCP от оригинальных портов USB, которые несут данные. Некоторые продукты Apple ограничивают зарядный ток, подключая различные значения резисторов к контактам D + и D-.

Для поддержки зарядки и обмена данными при использовании DCP предлагается Y-образный кабель, который подключается к исходному порту USB для потоковой передачи данных и к порту DCP для удовлетворения потребностей в зарядке. Это выглядит логичным решением, но в спецификации соответствия USB говорится, что «использование Y-кабеля запрещено на любом периферийном устройстве USB», что означает «если периферийному устройству USB требуется больше энергии, чем разрешено спецификацией USB, для которой он предназначен. тогда он должен быть автономным.Y-кабели и так называемые дополнительные адаптеры зарядки (ACA) используются без явных трудностей.

Вопрос задается: «Могу ли я повредить устройство, подключив мое устройство к USB-зарядному устройству, которое обеспечивает ток более 500 мА и 900 мА?» Ответ нет . Устройство рисует только то, что ему нужно и не более. Аналогия заключается в подключении лампы или тостера к розетке переменного тока. Лампа требует небольшого тока, пока тостер идет на максимум. Больше энергии от зарядного устройства USB сократит время зарядки.


Режим сна и зарядки

В большинстве случаев выключение компьютера также отключает USB. Некоторые ПК имеют

.
Схема индикатора низкого заряда батареи с использованием только двух транзисторов

В следующем посте описывается простая схема индикатора низкого заряда батареи с использованием только двух недорогих NPN-транзисторов. Главной особенностью этой схемы является ее очень низкое энергопотребление в режиме ожидания.

Принципиальная схема

Мы до сих пор видели, как создать цепи индикатора низкого заряда батареи с использованием микросхемы 741 и 555, которые, несомненно, отличаются выдающимися возможностями обнаружения и индикации порогов низкого напряжения батареи.

Однако в следующем посте описывается еще одна похожая схема, которая намного дешевле и использует всего несколько NPN-транзисторов для получения требуемых признаков низкого заряда батареи.

Преимущество транзистора перед IC

Основным преимуществом предлагаемой двухтранзисторной схемы индикатора низкого заряда батареи является ее очень низкое потребление тока по сравнению с аналогами ИС, которые потребляют относительно более высокие токи.

IC 555 будет потреблять около 5 мА, IC741 около 3 мА, в то время как нынешняя схема будет потреблять около 1.Ток 5 мА.

Таким образом, настоящая схема становится более эффективной, особенно в случаях, когда потребление тока в режиме ожидания имеет тенденцию становиться проблемой, например, в блоках, которые зависят от слаботочных батарейных батарей, таких как батарея 9В PP3.

Схема может работать при 1,5 В

Еще одним преимуществом этой схемы является ее способность работать даже при напряжениях около 1,5 В, что дает ей четкое преимущество по сравнению со схемами на основе ИС.

Как показано на следующей принципиальной схеме, два транзистора сконфигурированы как датчик напряжения и инвертор.

Первый транзистор слева определяет уровень порогового напряжения в соответствии с настройкой предустановки 47К. Пока этот транзистор проводит, второй транзистор справа удерживается выключенным, что также держит светодиод выключенным.

Как только напряжение батареи падает ниже установленного порогового уровня, левый транзистор больше не может проводить.

Эта ситуация немедленно запускает правый транзистор, включая светодиод.

Светодиод включается и отображает необходимые предупреждения о низком заряде батареи.

Схема

Видео Демонстрация:

Вышеупомянутая схема была успешно построена и установлена ​​г-ном Алланом в его блоке обнаружения паранормального истощения. В следующем видео представлены результаты реализации:

Модернизация вышеуказанной транзисторной цепи низкого заряда батареи в цепь отключения низкого заряда батареи

Как показано на приведенной выше схеме, индикатор низкого заряда батареи формируется двумя NPN-транзисторами, в то время как дополнительный BC557 и реле используется для отключения батареи от нагрузки, когда она достигает нижнего порога, в этом состоянии реле соединяет батарею с доступным зарядным входом.

Однако, когда батарея находится в нормальном состоянии, реле соединяет батарею с нагрузкой и позволяет нагрузке работать от батареи.

Добавление гистерезиса

Одним из недостатков вышеупомянутой конструкции может быть вибрация реле при пороговых уровнях напряжения из-за падения напряжения батареи непосредственно во время процесса переключения реле.

Этого можно избежать, добавив 100 мкФ у основания середины BC547. Однако это все равно не остановит реле от постоянного включения / выключения при низком пороге переключения батареи.

Чтобы исправить это, потребуется ввести эффект гистерезиса, который может быть достигнут через резистор обратной связи между коллектором BC557 и средним транзистором BC547.

Модифицированную конструкцию для реализации вышеуказанного условия можно увидеть на следующей диаграмме:

Два резистора, один на основании BC547, а другой на коллекторе BC557, определяют другой порог переключения реле, то есть полное порог отключения заряда батареи.Здесь значения выбираются произвольно, для получения точных результатов эти значения необходимо оптимизировать методом проб и ошибок.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете общаться через комментарии, я буду рад помочь!

Зарядка аккумуляторов с помощью источника питания - Battery University

Узнайте, как заряжать аккумулятор без специального зарядного устройства.

Батареи можно заряжать вручную с помощью источника питания с настраиваемым пользователем ограничением напряжения и тока. Я подчеркиваю руководство , потому что зарядка нуждается в ноу-хау и никогда не может быть оставлен без присмотра; прекращение заряда не автоматизировано. Из-за трудностей с обнаружением полного заряда с помощью никелевых батарей я рекомендую заряжать только свинцовые и литиевые батареи вручную.

Свинцово-кислотный

Перед подключением аккумулятора рассчитайте зарядное напряжение в соответствии с количеством последовательно соединенных элементов, а затем установите желаемое ограничение напряжения и тока. Чтобы зарядить 12-вольтовую свинцово-кислотную батарею (шесть элементов) до предела напряжения 2,40 В, установите напряжение 14,4 В (6 x 2,40). Выберите зарядный ток в соответствии с размером батареи. Для свинцовой кислоты это составляет от 10 до 30 процентов от номинальной емкости. Аккумулятор 10Ач при 30 процентах заряда около 3А; процент может быть ниже.Батарея стартера 80Ah может заряжаться от 8А. (Уровень заряда 10 процентов равен 0,1C.)

Следите за температурой, напряжением и током батареи во время зарядки. Заряжайте только при температуре окружающей среды в хорошо проветриваемом помещении. Как только батарея полностью зарядится и ток упадет до 3 процентов от номинального Ач, заряд завершится. Отключите заряд. Также отключите заряд через 16–24 часа, если ток достиг дна и не может понизиться; высокий уровень саморазряда (мягкое короткое замыкание) может помешать батарее достичь низкого уровня насыщения.Если вам нужен плавучий заряд для готовности к работе, снизьте зарядное напряжение примерно до 2,25 В / элемент.

Вы также можете использовать источник питания для выравнивания свинцово-кислотной батареи, установив зарядное напряжение на 10 процентов выше, чем рекомендуется. Время перезарядки является критическим и должно тщательно соблюдаться. (См. BU-404: Что такое выравнивающий заряд.)

Источник питания также может реверсировать сульфатирование. Установите зарядное напряжение выше рекомендуемого уровня, установите ограничение тока на минимальное практическое значение и соблюдайте напряжение аккумулятора.Поначалу полностью сульфатированная свинцовая кислота может потреблять очень мало тока, и когда сульфатирующий слой растворяется, ток будет постепенно увеличиваться. Повышение температуры и размещение батареи на ультразвуковом вибраторе также могут помочь в этом процессе. Если аккумулятор не принимает заряд через 24 часа, восстановление маловероятно. (См. BU-804b: Сульфатирование и как его предотвратить.)

Литий-ионный

Литий-ионная зарядка аналогична свинцовой кислоте, и вы также можете использовать источник питания, но соблюдайте особую осторожность.Проверьте полное напряжение зарядки, которое обычно составляет 4,20 В / элемент, и установите пороговое значение соответствующим образом. Убедитесь, что ни одна из ячеек, подключенных последовательно, не превышает это напряжение. (Защитная схема в коммерческой упаковке делает это.) Полная зарядка достигается, когда элемент (ы) достигает 4,20 В / напряжение элемента, и ток падает до 3 процентов от номинального тока, или достиг дна и не может продолжаться дальше. После полной зарядки отсоедините аккумулятор. Никогда не позволяйте ячейке оставаться при 4,20 В дольше, чем на несколько часов.(См. BU-409: Зарядка литий-ионного аккумулятора.)

Обратите внимание, что не все литий-ионные аккумуляторы заряжаются до порога напряжения 4,20 В / элемент. Литий-фосфат железа обычно заряжается до напряжения отключения 3,65 В / элемент, а литий-титанат - до 2,85 В / элемент. Некоторые энергетические ячейки могут принимать 4,30 В / элемент и выше. Важно соблюдать эти пределы напряжения. (См. БУ-205: Типы литий-ионных.)

NiCd и NiMH

Зарядка никелевых батарей с помощью источника питания является сложной задачей, поскольку обнаружение полного заряда коренится в сигнатуре напряжения, которая изменяется в зависимости от приложенного тока заряда.Если вам необходимо заряжать NiCd и NiMH с помощью регулируемого источника питания, используйте повышение температуры при быстрой зарядке 0,3–1C в качестве индикатора полной зарядки. При зарядке при низком токе оцените уровень оставшегося заряда и рассчитайте время зарядки. Пустой 2Ah NiMH зарядится примерно через 3 часа при 750–1000 мА. Подзарядка, также известная как плата за техническое обслуживание, должна быть снижена до 0,05 ° С. (См. BU-407: Зарядка никель-кадмий; BU-408: Зарядка никель-металлогидрид.)

Последнее обновление 2016-02-27


*** Пожалуйста, прочитайте относительно комментариев ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University следит за комментариями и понимает важность выражения взглядов и мнений на общем форуме. Однако все общение должно осуществляться с использованием соответствующего языка и предотвращения спама и дискриминации.

Если у вас есть вопрос, вам нужна дополнительная информация, есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Хотя мы прилагаем все усилия, чтобы ответить на ваши вопросы точно, мы не можем гарантировать результаты.Мы также не можем взять на себя ответственность за любой ущерб или травмы, которые могут возникнуть в результате предоставления информации. Пожалуйста, примите наш совет как бесплатную общественную поддержку, а не как инженерную или профессиональную услугу.

,
Схема фотовспышки на батарейках: Схемы и принцип работы фотовспышек

Отправить ответ

avatar
  Подписаться  
Уведомление о
Пролистать наверх