Все о матрицах: Основы высшей математики — Матрицы — Высшая математика — Теория, тесты, формулы и задачи

Основы высшей математики — Матрицы — Высшая математика — Теория, тесты, формулы и задачи

Оглавление:

  • Основные теоретические сведения
    • Матрицы
    • Обратная матрица
  • Матрицы. Вся теория и задачи с решениями или ответами

 

Основные теоретические сведения

Матрицы

К оглавлению…

Матрицей называют прямоугольную таблицу, заполненную числами. Важнейшие характеристики матрицы – число строк и число столбцов. Если у матрицы одинаковое число строк и столбцов, ее называют квадратной. Обозначают матрицы большими латинскими буквами.

Сами числа называют элементами матрицы и характеризуют их положением в матрице, задавая номер строки и номер столбца и записывая их в виде двойного индекса, причем вначале записывают номер строки, а затем столбца. Например, a14 есть элемент матрицы, стоящий в первой строке и четвертом столбце, a32 стоит в третьей строке и втором столбце.

Главной диагональю квадратной матрицы называют элементы, имеющие одинаковые индексы, то есть те элементы, у которых номер строки совпадает с номером столбца. Побочная диагональ идет «перпендикулярно» главной диагонали.

Особую важность представляют собой так называемые единичные матрицы. Это квадратные матрицы, у которых на главной диагонали стоят 1, а все остальные числа равны 0. Обозначают единичные матрицы E. Матрицы называют равными, если у них равны число строк, число столбцов, и все элементы, имеющие одинаковые индексы, равны. Матрица называется нулевой, если все ее элементы равны 0. Обозначается нулевая матрица О.

Простейшие действия с матрицами

1. Умножение матрицы на число. Для этого необходимо умножить каждый элемент матрицы на данное число.

2. Сложение матриц. Складывать можно только матрицы одинакового размера, то есть имеющие одинаковое число строк и одинаковое число столбцов. При сложении матриц соответствующие их элементы складываются.

3. Транспонирование матрицы. При транспонировании у матрицы строки становятся столбцами и наоборот. Полученная матрица называется транспонированной и обозначается AT. Для транспонирования матриц справедливы следующие свойства:

4. Умножение матриц.

Для произведения матриц существуют следующие свойства:

  • Умножать можно матрицы, если число столбцов первой матрицы равно числу строк второй матрицы.
  • В результате получится матрица, число строк которой равно числу строк первой матрицы, а число столбцов равно числу столбцов второй матрицы.
  • Умножение матриц некоммутативно. Это значит, что от перестановки местами матриц в произведении результат меняется. Более того, если можно посчитать произведение A∙B, это совсем не означает, что можно посчитать произведение B∙A.
  • Пусть C = A∙B. Для определения элемента матрицы С, стоящего в i-той строке и k-том столбце необходимо взять i-тую строку первой умножаемой матрицы и k-тый столбец второй. Далее поочередно брать элементы этих строки и столбца и умножать их. Берем первый элемент из строки первой матрицы и умножаем на первый элемент столбца второй матрицы. Далее берем второй элемент строки первой матрицы и умножаем на второй элемент столбца второй матрицы и так далее. А потом все эти произведения надо сложить.

Свойства произведения матриц:

Определитель матрицы

Определителем (детерминантом) квадратной матрицы А называется число, которое обозначается detA, реже |A| или просто Δ, и вычисляется определённым образом. Для матрицы размера 1х1 определителем является сам единственный элемент матрицы. Для матрицы размера 2х2 определитель находят по следующей формуле:

Миноры и алгебраические дополнения

Рассмотрим матрицу А. Выберем в ней s строк и s столбцов. Составим квадратную матрицу из элементов, стоящих на пересечении полученных строк и столбцов. Минором матрицы А порядка s называют определитель полученной матрицы.

Рассмотрим квадратную матрицу А. Выберем в ней s строк и s столбцов. Дополнительным минором к минору порядка s называют определитель, составленный из элементов, оставшихся после вычеркивания данных строк и столбцов.

Алгебраическим дополнением к элементу aik квадратной матрицы А называют дополнительный минор к этому элементу, умноженный на (–1)i+k, где i+k есть сумма номеров строки и столбца элемента aik. Обозначают алгебраическое дополнение Aik.

Вычисление определителя матрицы через алгебраические дополнения

Рассмотрим квадратную матрицу А. Для вычисления ее определителя необходимо выбрать любую ее строку или столбец и найти произведения каждого элемента этой строки или столбца на алгебраическое дополнение к нему. А дальше надо просуммировать все эти произведения.

Когда будете считать алгебраические дополнения, не забывайте про множитель (–1)i+k. Чтобы счет был более простым, выбирайте ту строку или столбец матрицы, который содержит наибольшее число нулей.

Расчет алгебраического дополнения может сводиться к расчету определителя размером более чем 2х2. В этом случае такой расчет также нужно проводить через алгебраические дополнения, и так далее до тех пор, пока алгебраические дополнения, которые нужно будет считать, не станут размером 2х2, после чего воспользоваться формулой выше.

 

Обратная матрица

К оглавлению…

Рассмотрим квадратную матрицу А. Матрица A–1 называется обратной к матрице А, если их произведения равны единичной матрице. Обратная матрица существует только для квадратных матриц. Обратная матрица существует, только если матрица А невырождена, то есть ее определитель не равен нулю. В противном случае обратную матрицу посчитать невозможно. Для построения обратной матрицы необходимо:

  1. Найти определитель матрицы.
  2. Найти алгебраическое дополнение для каждого элемента матрицы.
  3. Построить матрицу из алгебраических дополнений и обязательно транспонировать ее. Часто про транспонирование забывают.
  4. Разделить полученную матрицу на определитель исходной матрицы.

Таким образом, в случае, если матрица А имеет размер 3х3, обратная к ней матрица имеет вид:

 

Матрицы. Вся теория и задачи с решениями или ответами

К оглавлению…

Матрицы, определители, системы линейных уравнений (Лекция №12)

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.

В общем виде матрицу размером m×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы. Элементы матрицы удобно снабжать двумя индексами aij: первый указывает номер строки, а второй – номер столбца. Например, a23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец,

матрицей – столбцом.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц. Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если a11 = b11, a12 = b12, a21 = b21 и a22 = b22.

Транспонирование. Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием.

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают AT.

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т. е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц

A и B называется матрица C, которая определяется по правилу, например,

или

Примеры. Найти сумму матриц:

  1. .
  2. — нельзя, т.к. размеры матриц различны.
  3. .

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C=A+(B+C).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

  1. .

Примеры.

  1. .
  2. Найти 2A-B, если , .

    .

  3. Найти C=–3A+4B.

    Матрицу C найти нельзя, т.к. матрицы A и B имеют разные размеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:

.

Таким образом, например, чтобы получить у произведения (т. е. в матрице

C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (aij) размера m×n на матрицу B = (bij) размера n×p, то получим матрицу C размера m×p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка.

В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

  1. Пусть

    Найти элементы c12, c23 и c21 матрицы C.

  2. Найти произведение матриц.

    .

  3. .
  4. — нельзя, т.к. ширина первой матрицы равна 2-м элементам, а высота второй – 3-м.
  5. Пусть

    Найти АВ и ВА.

  6. Найти АВ и ВА.

    , B·A – не имеет смысла.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙BB∙A. Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC.

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A.

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например, если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

  1. .
  2. Вычислить определитель матрицы D, если D= -А+2В и

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.

  1. .
  2. .
  3. Решите уравнение..

    .

    (x+3)(4x-4-3x)+4(3x-4x+4)=0.

    (x+3)(x-4)+4(-x+4)=0.

    (x-4)(x-1)=0.

    x1 = 4, x2 = 1.

Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки «+» и «–» у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Матрица | Определение, типы и факты

Ключевые люди:
Артур Кэли Нильс Фабиан Хельге фон Кох
Похожие темы:
магический квадрат определитель нулевая матрица квадратная матрица элемент

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

матрица , набор чисел, расположенных в строках и столбцах так, чтобы образовать прямоугольный массив. Числа называются элементами или элементами матрицы. Матрицы имеют широкое применение в технике, физике, экономике и статистике, а также в различных разделах математики. Матрицы также имеют важные приложения в компьютерной графике, где они использовались для представления поворотов и других преобразований изображений.

Исторически сложилось так, что первой была распознана не матрица, а определенное число, связанное с квадратным массивом чисел, называемое определителем. Лишь постепенно возникло представление о матрице как об алгебраической сущности. Срок 9Матрица 0025 была введена английским математиком XIX века Джеймсом Сильвестром, но именно его друг, математик Артур Кэли, разработал алгебраический аспект матриц в двух статьях в 1850-х годах. Кейли впервые применил их к изучению систем линейных уравнений, где они до сих пор очень полезны. Они важны еще и потому, что, как признал Кейли, определенные наборы матриц образуют алгебраические системы, в которых справедливы многие обычные законы арифметики (например, ассоциативный и распределительный законы), но в которых другие законы (например, коммутативный закон) справедливы. недействительно.

Если имеется м строк и n столбцов, говорят, что матрица представляет собой матрицу « м на n », записанную как « м × n ». Например,

— это матрица 2 × 3. Матрица с n строк и n столбцов называется квадратной матрицей порядка n . Обычное число можно рассматривать как матрицу 1 × 1; таким образом, 3 можно рассматривать как матрицу [3]. Матрица только с одной строкой и n столбцов называется вектором-строкой, а матрица только с одним столбцом и n строк называется вектор-столбцом.

В общепринятых обозначениях заглавная буква обозначает матрицу, а соответствующая строчная буква с двойным нижним индексом описывает элемент матрицы. Таким образом, a ij является элементом i -й строки и j -го столбца матрицы A . Если A представляет собой матрицу 2 × 3, показанную выше, то a 11 = 1, a 12 = 3, a 13 = 8, a 21 = 2, a 22 = −4, а a 23 = 5. При определенных условиях можно складывать как отдельные объекты, так и матрицы. породив важные математические системы, известные как матричные алгебры.

Матрицы естественным образом встречаются в системах одновременных уравнений. В следующей системе для неизвестных x и y массив чисел представляет собой матрицу, элементами которой являются коэффициенты неизвестных. Решение уравнений полностью зависит от этих чисел и от их конкретного расположения. Если бы 3 и 4 поменять местами, решение было бы другим.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Две матрицы A и B равны друг другу, если они имеют одинаковое количество строк и одинаковое количество столбцов и если a ij = b 6 для каждого i и каждого j . Если A и B две матрицы размером m × n , то их сумма равна S = A + B is the m × n matrix whose elements s ij = a ij + b ij . То есть каждый элемент S равен сумме элементов в соответствующих позициях A и B .

Матрицу A можно умножить на обычное число c , которое называется скаляром. Продукт обозначен цифрой cA или Ac и представляет собой матрицу, элементами которой являются ca ij .

Умножение матрицы A на матрицу B для получения матрицы C определяется только тогда, когда количество столбцов первой матрицы A равно количеству строк второй матрицы B . Определить элемент c ij , который находится в i -м ряду и j -й столбец произведения, первый элемент в i -й строке A умножается на первый элемент в j -й столбец B , второй элемент в строке на второй элемент в столбце и так далее, пока последний элемент в строке не будет умножен на последний элемент столбца; сумма всех этих произведений дает элемент c ij . В символах для случая, когда А имеет м столбцов и B имеет m строк, Матрица C имеет столько строк, сколько A и столько же столбцов, сколько B .

В отличие от умножения обычных чисел на и b , в котором ab всегда равно ba , умножение матриц A и B не является коммутативным. Однако он является ассоциативным и дистрибутивным по сравнению с сложением. То есть, когда операции возможны, всегда выполняются следующие уравнения: A ( до н.э. ) = ( AB ) C , A ( B + C ) = AB + AC и ( B + + AC и ( B + ) AC и ( B + + . А = ВА + СА . Если матрицу 2 × 2 A , строки которой равны (2, 3) и (4, 5), умножить на себя, то произведение, обычно записываемое как A 2 , имеет строки (16, 21) и ( 28, 37).

Матрица O , все элементы которой равны 0, называется нулевой или нулевой матрицей. Квадратная матрица Число с единицами на главной диагонали (от верхнего левого угла к нижнему правому) и нулями в остальных местах называется единичной или единичной матрицей. Его обозначают I или I n , чтобы показать, что его порядок равен n . Если B — любая квадратная матрица, а I и O — единичная и нулевая матрицы одного порядка, всегда верно, что B + O = O + B = B и БИ = БИ = Б . Следовательно, O и I ведут себя как 0 и 1 в обычной арифметике. (На самом деле обычная арифметика — это частный случай матричной арифметики, в которой все матрицы имеют размер 1 × 1.)

Квадратная матрица A , в которой элементы a ij отличны от нуля только тогда, когда i = j называется диагональной матрицей. Диагональные матрицы обладают тем особым свойством, что их умножение коммутативно; то есть для двух диагональных матриц А и В , АВ = ВА . След квадратной матрицы представляет собой сумму элементов на главной диагонали.

С каждой квадратной матрицей A связано число, известное как определитель A , обозначаемый det A . Например, для матрицы 2 × 2 det A = ad bc . Квадратная матрица B называется невырожденной, если det B ≠ 0. Если B невырожденна, то существует матрица, обратная B , обозначаемый B -1 , такой, что BB -1 = B -1 B = I 90. Уравнение AX = B , в котором A и B — известные матрицы, а X — неизвестная матрица, решается однозначно, если A — невырожденная матрица, тогда A 6 −1 существует, и обе части уравнения можно умножить на него слева: А -1 ( АХ ) = А -1 В . Теперь А -1 ( АХ ) = ( А -1 А ) х = IX = х 9; следовательно, решение X = A −1 B . Система из m линейных уравнений с n неизвестными всегда может быть выражена в виде матричного уравнения AX = B , в котором A m × n матрица коэффициентов неизвестных, X n × 1 матрица неизвестных, B n × 1 матрица, содержащая числа на правая часть уравнения.

Проблема большого значения во многих областях науки заключается в следующем: по квадратной матрице A порядка n, найти n × 1 матрицу X, называемую n -мерный вектор, такой что AX = cX . Здесь c — число, называемое собственным значением, а X — собственный вектор. Существование собственного вектора X с собственным значением c означает, что некоторое преобразование пространства, связанное с матрицей A , растягивает пространство в направлении вектора X в c раз.

Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

Матрицы: что такое, понятия, типы, применение

  1. Ферровиал
  2. ШТОК

Матрицы представляют собой двумерный набор чисел или символов, распределенных в прямоугольной форме по вертикальным и горизонтальным линиям так, что их элементы расположены в строках и столбцах. Они полезны для описания систем линейных или дифференциальных уравнений, , а также представляет собой линейное приложение.

Каждая матрица представлена ​​заглавной буквой , , а ее элементы указаны строчными буквами в списке, заключенном в круглые или квадратные скобки. Каждый, в свою очередь, имеет двойной верхний индекс: первый относится к строке, а второй — к столбцу, которому он принадлежит.

Это математическое выражение можно складывать, умножать и разлагать, поэтому оно обычно используется в линейной алгебре .

Какие понятия связаны с матрицами?

Некоторые понятия, необходимые для завершения определения и анализа матриц:

  • Элементы: числа, составляющие матрицу.
  • Измерение: результат умножения количества строк на количество столбцов. Буква м используется для обозначения числа рядов и n для числа столбцов.
  • Кольца : этот алгебраический термин относится к системе, образованной набором внутренних операций, которые реагируют на набор свойств. Под матрицами понимаются элементы кольца.
  • Функция: правило соответствия между двумя множествами, в котором элемент первого множества соответствует исключительно одному элементу второго множества.

Какие типы матриц существуют?

Матрица может быть:

  1. Прямоугольная: имеет разное количество строк и столбцов.
  2. Ряд: прямоугольный массив с одной строкой.
  3. Столбец: прямоугольная матрица с одним столбцом.
  4. Null: массив, не содержащий элементов.
  5. Квадрат порядка n : матрица, имеющая такое же количество строк, как и столбцов. В матрице такого типа размерность называется порядком , а ее значение совпадает с количеством строк и столбцов.
  6. Диагональ: разновидность квадратной матрицы, в которой элементы, не расположенные на главной диагонали, равны нулю.
  7. Скаляр: диагональная матрица, в которой все элементы на главной диагонали равны.
  8. Идентичность: это скалярная матрица, в которой элементы главной диагонали равны единице, а все остальные элементы равны нулю.
  9. Инверсия: обратная сторона другой матрицы, элементы которой имеют знаки, противоположные основной матрице. То есть матрица, обратная матрице А, называется -А, а все элементы множества противоположны элементам матрицы А.
  10. Транспонирование: матрица, полученная при преобразовании строк в столбцы. Верхний индекс t используется для его представления, а его размерность n x m .
  11. Верхняя треугольная: это квадратная матрица, в которой хотя бы одно из слагаемых выше главной диагонали не равно нулю, а все члены ниже главной диагонали равны нулю.
  12. Нижняя треугольная: в отличие от предыдущего типа, этот тип матрицы имеет по крайней мере один элемент ниже главной диагонали, который отличен от нуля, а все те, что выше главной диагонали, равны нулю.

Как можно использовать матрицы?

Матрицы имеют множество применений, особенно для представления коэффициентов в системах уравнений или линейных приложений ; матрица может выполнять ту же функцию, что и векторные данные в линейной системе приложения.

Все о матрицах: Основы высшей математики — Матрицы — Высшая математика — Теория, тесты, формулы и задачи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Пролистать наверх